Cargando…

A rapid Orthopoxvirus purification protocol suitable for high-containment laboratories

Virus purification in a high-containment setting provides unique challenges due to barrier precautions and operational safety approaches that are not necessary in lower biosafety level (BSL) 2 environments. The need for high risk group pathogen diagnostic assay development, anti-viral research, path...

Descripción completa

Detalles Bibliográficos
Autores principales: Hughes, Laura, Wilkins, Kimberly, Goldsmith, Cynthia S., Smith, Scott, Hudson, Paul, Patel, Nishi, Karem, Kevin, Damon, Inger, Li, Yu, Olson, Victoria A., Satheshkumar, P.S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier/North-Holland Biomedical Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533856/
https://www.ncbi.nlm.nih.gov/pubmed/28131867
http://dx.doi.org/10.1016/j.jviromet.2017.01.018
Descripción
Sumario:Virus purification in a high-containment setting provides unique challenges due to barrier precautions and operational safety approaches that are not necessary in lower biosafety level (BSL) 2 environments. The need for high risk group pathogen diagnostic assay development, anti-viral research, pathogenesis and vaccine efficacy research necessitates work in BSL-3 and BSL-4 labs with infectious agents. When this work is performed in accordance with BSL-4 practices, modifications are often required in standard protocols. Classical virus purification techniques are difficult to execute in a BSL-3 or BSL-4 laboratory because of the work practices used in these environments. Orthopoxviruses are a family of viruses that, in some cases, requires work in a high-containment laboratory and due to size do not lend themselves to simpler purification methods. Current CDC purification techniques of orthopoxviruses uses 1,1,2-trichlorotrifluoroethane, commonly known as Genetron(®). Genetron(®) is a chlorofluorocarbon (CFC) that has been shown to be detrimental to the ozone and has been phased out and the limited amount of product makes it no longer a feasible option for poxvirus purification purposes. Here we demonstrate a new Orthopoxvirus purification method that is suitable for high-containment laboratories and produces virus that is not only comparable to previous purification methods, but improves on purity and yield.