Cargando…

SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses(1–3). In rare cases, viral proteins dampen antiviral r...

Descripción completa

Detalles Bibliográficos
Autores principales: Kee, John, Thudium, Samuel, Renner, David M., Glastad, Karl, Palozola, Katherine, Zhang, Zhen, Li, Yize, Lan, Yemin, Cesare, Joseph, Poleshko, Andrey, Kiseleva, Anna A., Truitt, Rachel, Cardenas-Diaz, Fabian L., Zhang, Xianwen, Xie, Xuping, Kotton, Darrell N., Alysandratos, Konstantinos D., Epstein, Jonathan A., Shi, Pei-Yong, Yang, Wenli, Morrisey, Edward, Garcia, Benjamin A., Berger, Shelley L., Weiss, Susan R., Korb, Erica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533993/
https://www.ncbi.nlm.nih.gov/pubmed/36198800
http://dx.doi.org/10.1038/s41586-022-05282-z
_version_ 1784802451578159104
author Kee, John
Thudium, Samuel
Renner, David M.
Glastad, Karl
Palozola, Katherine
Zhang, Zhen
Li, Yize
Lan, Yemin
Cesare, Joseph
Poleshko, Andrey
Kiseleva, Anna A.
Truitt, Rachel
Cardenas-Diaz, Fabian L.
Zhang, Xianwen
Xie, Xuping
Kotton, Darrell N.
Alysandratos, Konstantinos D.
Epstein, Jonathan A.
Shi, Pei-Yong
Yang, Wenli
Morrisey, Edward
Garcia, Benjamin A.
Berger, Shelley L.
Weiss, Susan R.
Korb, Erica
author_facet Kee, John
Thudium, Samuel
Renner, David M.
Glastad, Karl
Palozola, Katherine
Zhang, Zhen
Li, Yize
Lan, Yemin
Cesare, Joseph
Poleshko, Andrey
Kiseleva, Anna A.
Truitt, Rachel
Cardenas-Diaz, Fabian L.
Zhang, Xianwen
Xie, Xuping
Kotton, Darrell N.
Alysandratos, Konstantinos D.
Epstein, Jonathan A.
Shi, Pei-Yong
Yang, Wenli
Morrisey, Edward
Garcia, Benjamin A.
Berger, Shelley L.
Weiss, Susan R.
Korb, Erica
author_sort Kee, John
collection PubMed
description Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses(1–3). In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins(4–8), particularly those containing post-translational modifications required for transcriptional regulation(9–11). Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation(12–14). However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.
format Online
Article
Text
id pubmed-9533993
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-95339932022-10-06 SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry Kee, John Thudium, Samuel Renner, David M. Glastad, Karl Palozola, Katherine Zhang, Zhen Li, Yize Lan, Yemin Cesare, Joseph Poleshko, Andrey Kiseleva, Anna A. Truitt, Rachel Cardenas-Diaz, Fabian L. Zhang, Xianwen Xie, Xuping Kotton, Darrell N. Alysandratos, Konstantinos D. Epstein, Jonathan A. Shi, Pei-Yong Yang, Wenli Morrisey, Edward Garcia, Benjamin A. Berger, Shelley L. Weiss, Susan R. Korb, Erica Nature Article Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses(1–3). In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins(4–8), particularly those containing post-translational modifications required for transcriptional regulation(9–11). Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation(12–14). However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19. Nature Publishing Group UK 2022-10-05 2022 /pmc/articles/PMC9533993/ /pubmed/36198800 http://dx.doi.org/10.1038/s41586-022-05282-z Text en © The Author(s), under exclusive licence to Springer Nature Limited 2022, corrected publication 20232023Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Article
Kee, John
Thudium, Samuel
Renner, David M.
Glastad, Karl
Palozola, Katherine
Zhang, Zhen
Li, Yize
Lan, Yemin
Cesare, Joseph
Poleshko, Andrey
Kiseleva, Anna A.
Truitt, Rachel
Cardenas-Diaz, Fabian L.
Zhang, Xianwen
Xie, Xuping
Kotton, Darrell N.
Alysandratos, Konstantinos D.
Epstein, Jonathan A.
Shi, Pei-Yong
Yang, Wenli
Morrisey, Edward
Garcia, Benjamin A.
Berger, Shelley L.
Weiss, Susan R.
Korb, Erica
SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry
title SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry
title_full SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry
title_fullStr SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry
title_full_unstemmed SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry
title_short SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry
title_sort sars-cov-2 disrupts host epigenetic regulation via histone mimicry
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533993/
https://www.ncbi.nlm.nih.gov/pubmed/36198800
http://dx.doi.org/10.1038/s41586-022-05282-z
work_keys_str_mv AT keejohn sarscov2disruptshostepigeneticregulationviahistonemimicry
AT thudiumsamuel sarscov2disruptshostepigeneticregulationviahistonemimicry
AT rennerdavidm sarscov2disruptshostepigeneticregulationviahistonemimicry
AT glastadkarl sarscov2disruptshostepigeneticregulationviahistonemimicry
AT palozolakatherine sarscov2disruptshostepigeneticregulationviahistonemimicry
AT zhangzhen sarscov2disruptshostepigeneticregulationviahistonemimicry
AT liyize sarscov2disruptshostepigeneticregulationviahistonemimicry
AT lanyemin sarscov2disruptshostepigeneticregulationviahistonemimicry
AT cesarejoseph sarscov2disruptshostepigeneticregulationviahistonemimicry
AT poleshkoandrey sarscov2disruptshostepigeneticregulationviahistonemimicry
AT kiselevaannaa sarscov2disruptshostepigeneticregulationviahistonemimicry
AT truittrachel sarscov2disruptshostepigeneticregulationviahistonemimicry
AT cardenasdiazfabianl sarscov2disruptshostepigeneticregulationviahistonemimicry
AT zhangxianwen sarscov2disruptshostepigeneticregulationviahistonemimicry
AT xiexuping sarscov2disruptshostepigeneticregulationviahistonemimicry
AT kottondarrelln sarscov2disruptshostepigeneticregulationviahistonemimicry
AT alysandratoskonstantinosd sarscov2disruptshostepigeneticregulationviahistonemimicry
AT epsteinjonathana sarscov2disruptshostepigeneticregulationviahistonemimicry
AT shipeiyong sarscov2disruptshostepigeneticregulationviahistonemimicry
AT yangwenli sarscov2disruptshostepigeneticregulationviahistonemimicry
AT morriseyedward sarscov2disruptshostepigeneticregulationviahistonemimicry
AT garciabenjamina sarscov2disruptshostepigeneticregulationviahistonemimicry
AT bergershelleyl sarscov2disruptshostepigeneticregulationviahistonemimicry
AT weisssusanr sarscov2disruptshostepigeneticregulationviahistonemimicry
AT korberica sarscov2disruptshostepigeneticregulationviahistonemimicry