Cargando…
Statistical inference using GLEaM model with spatial heterogeneity and correlation between regions
A better understanding of various patterns in the coronavirus disease 2019 (COVID-19) spread in different parts of the world is crucial to its prevention and control. Motivated by the previously developed Global Epidemic and Mobility (GLEaM) model, this paper proposes a new stochastic dynamic model...
Autores principales: | Tan, Yixuan, Zhang, Yuan, Cheng, Xiuyuan, Zhou, Xiao-Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534028/ https://www.ncbi.nlm.nih.gov/pubmed/36198691 http://dx.doi.org/10.1038/s41598-022-18775-8 |
Ejemplares similares
-
Gleam: the GLAST Large Area Telescope Simulation Framework
por: Boinee, Praveen, et al.
Publicado: (2003) -
The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale
por: Broeck, Wouter Van den, et al.
Publicado: (2011) -
Statistical inference for spatial processes
por: Ripley, Brian D
Publicado: (1988) -
Statistical inference for spatial poisson processes
por: Kutoyants, Yu A
Publicado: (1998) -
Statistical Tests for Force Inference in Heterogeneous Environments
por: Serov, Alexander S., et al.
Publicado: (2020)