Cargando…
A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation
To propose a new decision algorithm combining biomarkers measured in a tumor biopsy with clinical variables, to predict recurrence after liver transplantation (LT). BACKGROUND: Liver cancer is one of the most frequent causes of cancer-related mortality. LT is the best treatment for hepatocellular ca...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534058/ https://www.ncbi.nlm.nih.gov/pubmed/35916378 http://dx.doi.org/10.1097/SLA.0000000000005637 |
_version_ | 1784802463378833408 |
---|---|
author | Pinto-Marques, Hugo Cardoso, Joana Silva, Sílvia Neto, João L. Gonçalves-Reis, Maria Proença, Daniela Mesquita, Marta Manso, André Carapeta, Sara Sobral, Mafalda Figueiredo, Antonio Rodrigues, Clara Milheiro, Adelaide Carvalho, Ana Perdigoto, Rui Barroso, Eduardo Pereira-Leal, José B. |
author_facet | Pinto-Marques, Hugo Cardoso, Joana Silva, Sílvia Neto, João L. Gonçalves-Reis, Maria Proença, Daniela Mesquita, Marta Manso, André Carapeta, Sara Sobral, Mafalda Figueiredo, Antonio Rodrigues, Clara Milheiro, Adelaide Carvalho, Ana Perdigoto, Rui Barroso, Eduardo Pereira-Leal, José B. |
author_sort | Pinto-Marques, Hugo |
collection | PubMed |
description | To propose a new decision algorithm combining biomarkers measured in a tumor biopsy with clinical variables, to predict recurrence after liver transplantation (LT). BACKGROUND: Liver cancer is one of the most frequent causes of cancer-related mortality. LT is the best treatment for hepatocellular carcinoma (HCC) patients but the scarcity of organs makes patient selection a critical step. In addition, clinical criteria widely applied in patient eligibility decisions miss potentially curable patients while selecting patients that relapse after transplantation. METHODS: A literature systematic review singled out candidate biomarkers whose RNA levels were assessed by quantitative PCR in tumor tissue from 138 HCC patients submitted to LT (>5 years follow up, 32% beyond Milan criteria). The resulting 4 gene signature was combined with clinical variables to develop a decision algorithm using machine learning approaches. The method was named HepatoPredict. RESULTS: HepatoPredict identifies 99% disease-free patients (>5 year) from a retrospective cohort, including many outside clinical criteria (16%–24%), thus reducing the false negative rate. This increased sensitivity is accompanied by an increased positive predictive value (88.5%–94.4%) without any loss of long-term overall survival or recurrence rates for patients deemed eligible by HepatoPredict; those deemed ineligible display marked reduction of survival and increased recurrence in the short and long term. CONCLUSIONS: HepatoPredict outperforms conventional clinical-pathologic selection criteria (Milan, UCSF), providing superior prognostic information. Accurately identifying which patients most likely benefit from LT enables an objective stratification of waiting lists and information-based allocation of optimal versus suboptimal organs. |
format | Online Article Text |
id | pubmed-9534058 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-95340582022-10-11 A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation Pinto-Marques, Hugo Cardoso, Joana Silva, Sílvia Neto, João L. Gonçalves-Reis, Maria Proença, Daniela Mesquita, Marta Manso, André Carapeta, Sara Sobral, Mafalda Figueiredo, Antonio Rodrigues, Clara Milheiro, Adelaide Carvalho, Ana Perdigoto, Rui Barroso, Eduardo Pereira-Leal, José B. Ann Surg ESA Paper To propose a new decision algorithm combining biomarkers measured in a tumor biopsy with clinical variables, to predict recurrence after liver transplantation (LT). BACKGROUND: Liver cancer is one of the most frequent causes of cancer-related mortality. LT is the best treatment for hepatocellular carcinoma (HCC) patients but the scarcity of organs makes patient selection a critical step. In addition, clinical criteria widely applied in patient eligibility decisions miss potentially curable patients while selecting patients that relapse after transplantation. METHODS: A literature systematic review singled out candidate biomarkers whose RNA levels were assessed by quantitative PCR in tumor tissue from 138 HCC patients submitted to LT (>5 years follow up, 32% beyond Milan criteria). The resulting 4 gene signature was combined with clinical variables to develop a decision algorithm using machine learning approaches. The method was named HepatoPredict. RESULTS: HepatoPredict identifies 99% disease-free patients (>5 year) from a retrospective cohort, including many outside clinical criteria (16%–24%), thus reducing the false negative rate. This increased sensitivity is accompanied by an increased positive predictive value (88.5%–94.4%) without any loss of long-term overall survival or recurrence rates for patients deemed eligible by HepatoPredict; those deemed ineligible display marked reduction of survival and increased recurrence in the short and long term. CONCLUSIONS: HepatoPredict outperforms conventional clinical-pathologic selection criteria (Milan, UCSF), providing superior prognostic information. Accurately identifying which patients most likely benefit from LT enables an objective stratification of waiting lists and information-based allocation of optimal versus suboptimal organs. Lippincott Williams & Wilkins 2022-11 2022-08-01 /pmc/articles/PMC9534058/ /pubmed/35916378 http://dx.doi.org/10.1097/SLA.0000000000005637 Text en Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) |
spellingShingle | ESA Paper Pinto-Marques, Hugo Cardoso, Joana Silva, Sílvia Neto, João L. Gonçalves-Reis, Maria Proença, Daniela Mesquita, Marta Manso, André Carapeta, Sara Sobral, Mafalda Figueiredo, Antonio Rodrigues, Clara Milheiro, Adelaide Carvalho, Ana Perdigoto, Rui Barroso, Eduardo Pereira-Leal, José B. A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation |
title | A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation |
title_full | A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation |
title_fullStr | A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation |
title_full_unstemmed | A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation |
title_short | A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation |
title_sort | gene expression signature to select hepatocellular carcinoma patients for liver transplantation |
topic | ESA Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534058/ https://www.ncbi.nlm.nih.gov/pubmed/35916378 http://dx.doi.org/10.1097/SLA.0000000000005637 |
work_keys_str_mv | AT pintomarqueshugo ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT cardosojoana ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT silvasilvia ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT netojoaol ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT goncalvesreismaria ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT proencadaniela ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT mesquitamarta ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT mansoandre ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT carapetasara ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT sobralmafalda ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT figueiredoantonio ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT rodriguesclara ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT milheiroadelaide ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT carvalhoana ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT perdigotorui ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT barrosoeduardo ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT pereiralealjoseb ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT pintomarqueshugo geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT cardosojoana geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT silvasilvia geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT netojoaol geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT goncalvesreismaria geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT proencadaniela geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT mesquitamarta geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT mansoandre geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT carapetasara geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT sobralmafalda geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT figueiredoantonio geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT rodriguesclara geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT milheiroadelaide geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT carvalhoana geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT perdigotorui geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT barrosoeduardo geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation AT pereiralealjoseb geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation |