Cargando…

A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation

To propose a new decision algorithm combining biomarkers measured in a tumor biopsy with clinical variables, to predict recurrence after liver transplantation (LT). BACKGROUND: Liver cancer is one of the most frequent causes of cancer-related mortality. LT is the best treatment for hepatocellular ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Pinto-Marques, Hugo, Cardoso, Joana, Silva, Sílvia, Neto, João L., Gonçalves-Reis, Maria, Proença, Daniela, Mesquita, Marta, Manso, André, Carapeta, Sara, Sobral, Mafalda, Figueiredo, Antonio, Rodrigues, Clara, Milheiro, Adelaide, Carvalho, Ana, Perdigoto, Rui, Barroso, Eduardo, Pereira-Leal, José B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534058/
https://www.ncbi.nlm.nih.gov/pubmed/35916378
http://dx.doi.org/10.1097/SLA.0000000000005637
_version_ 1784802463378833408
author Pinto-Marques, Hugo
Cardoso, Joana
Silva, Sílvia
Neto, João L.
Gonçalves-Reis, Maria
Proença, Daniela
Mesquita, Marta
Manso, André
Carapeta, Sara
Sobral, Mafalda
Figueiredo, Antonio
Rodrigues, Clara
Milheiro, Adelaide
Carvalho, Ana
Perdigoto, Rui
Barroso, Eduardo
Pereira-Leal, José B.
author_facet Pinto-Marques, Hugo
Cardoso, Joana
Silva, Sílvia
Neto, João L.
Gonçalves-Reis, Maria
Proença, Daniela
Mesquita, Marta
Manso, André
Carapeta, Sara
Sobral, Mafalda
Figueiredo, Antonio
Rodrigues, Clara
Milheiro, Adelaide
Carvalho, Ana
Perdigoto, Rui
Barroso, Eduardo
Pereira-Leal, José B.
author_sort Pinto-Marques, Hugo
collection PubMed
description To propose a new decision algorithm combining biomarkers measured in a tumor biopsy with clinical variables, to predict recurrence after liver transplantation (LT). BACKGROUND: Liver cancer is one of the most frequent causes of cancer-related mortality. LT is the best treatment for hepatocellular carcinoma (HCC) patients but the scarcity of organs makes patient selection a critical step. In addition, clinical criteria widely applied in patient eligibility decisions miss potentially curable patients while selecting patients that relapse after transplantation. METHODS: A literature systematic review singled out candidate biomarkers whose RNA levels were assessed by quantitative PCR in tumor tissue from 138 HCC patients submitted to LT (>5 years follow up, 32% beyond Milan criteria). The resulting 4 gene signature was combined with clinical variables to develop a decision algorithm using machine learning approaches. The method was named HepatoPredict. RESULTS: HepatoPredict identifies 99% disease-free patients (>5 year) from a retrospective cohort, including many outside clinical criteria (16%–24%), thus reducing the false negative rate. This increased sensitivity is accompanied by an increased positive predictive value (88.5%–94.4%) without any loss of long-term overall survival or recurrence rates for patients deemed eligible by HepatoPredict; those deemed ineligible display marked reduction of survival and increased recurrence in the short and long term. CONCLUSIONS: HepatoPredict outperforms conventional clinical-pathologic selection criteria (Milan, UCSF), providing superior prognostic information. Accurately identifying which patients most likely benefit from LT enables an objective stratification of waiting lists and information-based allocation of optimal versus suboptimal organs.
format Online
Article
Text
id pubmed-9534058
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-95340582022-10-11 A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation Pinto-Marques, Hugo Cardoso, Joana Silva, Sílvia Neto, João L. Gonçalves-Reis, Maria Proença, Daniela Mesquita, Marta Manso, André Carapeta, Sara Sobral, Mafalda Figueiredo, Antonio Rodrigues, Clara Milheiro, Adelaide Carvalho, Ana Perdigoto, Rui Barroso, Eduardo Pereira-Leal, José B. Ann Surg ESA Paper To propose a new decision algorithm combining biomarkers measured in a tumor biopsy with clinical variables, to predict recurrence after liver transplantation (LT). BACKGROUND: Liver cancer is one of the most frequent causes of cancer-related mortality. LT is the best treatment for hepatocellular carcinoma (HCC) patients but the scarcity of organs makes patient selection a critical step. In addition, clinical criteria widely applied in patient eligibility decisions miss potentially curable patients while selecting patients that relapse after transplantation. METHODS: A literature systematic review singled out candidate biomarkers whose RNA levels were assessed by quantitative PCR in tumor tissue from 138 HCC patients submitted to LT (>5 years follow up, 32% beyond Milan criteria). The resulting 4 gene signature was combined with clinical variables to develop a decision algorithm using machine learning approaches. The method was named HepatoPredict. RESULTS: HepatoPredict identifies 99% disease-free patients (>5 year) from a retrospective cohort, including many outside clinical criteria (16%–24%), thus reducing the false negative rate. This increased sensitivity is accompanied by an increased positive predictive value (88.5%–94.4%) without any loss of long-term overall survival or recurrence rates for patients deemed eligible by HepatoPredict; those deemed ineligible display marked reduction of survival and increased recurrence in the short and long term. CONCLUSIONS: HepatoPredict outperforms conventional clinical-pathologic selection criteria (Milan, UCSF), providing superior prognostic information. Accurately identifying which patients most likely benefit from LT enables an objective stratification of waiting lists and information-based allocation of optimal versus suboptimal organs. Lippincott Williams & Wilkins 2022-11 2022-08-01 /pmc/articles/PMC9534058/ /pubmed/35916378 http://dx.doi.org/10.1097/SLA.0000000000005637 Text en Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/)
spellingShingle ESA Paper
Pinto-Marques, Hugo
Cardoso, Joana
Silva, Sílvia
Neto, João L.
Gonçalves-Reis, Maria
Proença, Daniela
Mesquita, Marta
Manso, André
Carapeta, Sara
Sobral, Mafalda
Figueiredo, Antonio
Rodrigues, Clara
Milheiro, Adelaide
Carvalho, Ana
Perdigoto, Rui
Barroso, Eduardo
Pereira-Leal, José B.
A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation
title A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation
title_full A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation
title_fullStr A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation
title_full_unstemmed A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation
title_short A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation
title_sort gene expression signature to select hepatocellular carcinoma patients for liver transplantation
topic ESA Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534058/
https://www.ncbi.nlm.nih.gov/pubmed/35916378
http://dx.doi.org/10.1097/SLA.0000000000005637
work_keys_str_mv AT pintomarqueshugo ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT cardosojoana ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT silvasilvia ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT netojoaol ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT goncalvesreismaria ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT proencadaniela ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT mesquitamarta ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT mansoandre ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT carapetasara ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT sobralmafalda ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT figueiredoantonio ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT rodriguesclara ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT milheiroadelaide ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT carvalhoana ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT perdigotorui ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT barrosoeduardo ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT pereiralealjoseb ageneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT pintomarqueshugo geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT cardosojoana geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT silvasilvia geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT netojoaol geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT goncalvesreismaria geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT proencadaniela geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT mesquitamarta geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT mansoandre geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT carapetasara geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT sobralmafalda geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT figueiredoantonio geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT rodriguesclara geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT milheiroadelaide geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT carvalhoana geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT perdigotorui geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT barrosoeduardo geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation
AT pereiralealjoseb geneexpressionsignaturetoselecthepatocellularcarcinomapatientsforlivertransplantation