Cargando…
CellSpatialGraph: Integrate hierarchical phenotyping and graph modeling to characterize spatial architecture in tumor microenvironment on digital pathology
We present CellSpatialGraph, an integrated clustering and graph-based framework, to investigate the cellular spatial structure. Due to the lack of a clear understanding of the cell subtypes in the tumor microenvironment, unsupervised learning is applied to uncover cell phenotypes. Then, we build loc...
Autores principales: | Chen, Pingjun, Aminu, Muhammad, Hussein, Siba El, Khoury, Joseph D., Wu, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534201/ https://www.ncbi.nlm.nih.gov/pubmed/36203948 http://dx.doi.org/10.1016/j.simpa.2021.100156 |
Ejemplares similares
-
Human Learning of Hierarchical Graphs
por: Xia, Xiaohuan, et al.
Publicado: (2023) -
Identification of spatially variable genes with graph cuts
por: Zhang, Ke, et al.
Publicado: (2022) -
SpatialSim: Recognizing Spatial Configurations of Objects With Graph Neural Networks
por: Teodorescu, Laetitia, et al.
Publicado: (2022) -
Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST
por: Long, Yahui, et al.
Publicado: (2023) -
EspEn Graph for the Spatial Analysis of Entropy in Images
por: Espinosa Medina, Ricardo Alonso
Publicado: (2023)