Cargando…
Study on the different responses of different winter wheat cultivars to dry hot wind
Dry hot wind (DHW) is one of the main agro-meteorological disasters that occur during the grain filling stage of winter wheat in northern China. In this study, three major winter wheat cultivars planted at the Mazhuang experimental station, Xinji city, Hebei Province, including Henong 6119 (HN6119),...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534427/ https://www.ncbi.nlm.nih.gov/pubmed/36197886 http://dx.doi.org/10.1371/journal.pone.0274118 |
_version_ | 1784802538939219968 |
---|---|
author | Kang, Xiyan Le, Zhangyan Li, Chunqiang Dai, Liqin Quan, Chang Shi, Minghua Liao, Rongwei |
author_facet | Kang, Xiyan Le, Zhangyan Li, Chunqiang Dai, Liqin Quan, Chang Shi, Minghua Liao, Rongwei |
author_sort | Kang, Xiyan |
collection | PubMed |
description | Dry hot wind (DHW) is one of the main agro-meteorological disasters that occur during the grain filling stage of winter wheat in northern China. In this study, three major winter wheat cultivars planted at the Mazhuang experimental station, Xinji city, Hebei Province, including Henong 6119 (HN6119), Gaoyou 5218 (GY5218), and Jimai 325 (JM325), were analyzed. Through natural DHW and artificially simulated DHW experiments, we investigated how the physiological parameters of the three cultivars were affected on the day with DHW and the day before and after DHW occurred. Comparative analysis of the different responses among the physiological parameters of the three cultivars demonstrated that HN6119 experienced less leaf water loss by reducing its stomata conductance and transpiration rate under natural DHW conditions, while GY5218 and JM325 experienced more leaf water loss by increasing their stomata conductance and transpiration rates under natural DHW conditions. The net photosynthetic rate, transpiration rate, and stomata conductance of HN6119 recovered after the DHW conditions, while those of GY5218 and JM325 showed a continuously decreasing trend. The leaf photosynthetic water use efficiency decreased on DHW days because the net photosynthesis rate was reduced for HN6119, but the transpiration rate increased for GY5218 and JM325. HN6119 showed a significant positive correlation between physiological parameters, while GY5218 and JM325 showed a poor correlation after being affected by DHW conditions. The effect of artificial simulation under mild and severe DHW stress on the thousand kernel weight (TKW) of HN6119, GY5218 and JM325 was 0.01%, 3.51%, 3.57% and 0.36%, 8.12%, 8.84%, respectively. HN6119 showed better resistance to DHW, followed by GY5218, and JM325 showed the weakest resistance. |
format | Online Article Text |
id | pubmed-9534427 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-95344272022-10-06 Study on the different responses of different winter wheat cultivars to dry hot wind Kang, Xiyan Le, Zhangyan Li, Chunqiang Dai, Liqin Quan, Chang Shi, Minghua Liao, Rongwei PLoS One Research Article Dry hot wind (DHW) is one of the main agro-meteorological disasters that occur during the grain filling stage of winter wheat in northern China. In this study, three major winter wheat cultivars planted at the Mazhuang experimental station, Xinji city, Hebei Province, including Henong 6119 (HN6119), Gaoyou 5218 (GY5218), and Jimai 325 (JM325), were analyzed. Through natural DHW and artificially simulated DHW experiments, we investigated how the physiological parameters of the three cultivars were affected on the day with DHW and the day before and after DHW occurred. Comparative analysis of the different responses among the physiological parameters of the three cultivars demonstrated that HN6119 experienced less leaf water loss by reducing its stomata conductance and transpiration rate under natural DHW conditions, while GY5218 and JM325 experienced more leaf water loss by increasing their stomata conductance and transpiration rates under natural DHW conditions. The net photosynthetic rate, transpiration rate, and stomata conductance of HN6119 recovered after the DHW conditions, while those of GY5218 and JM325 showed a continuously decreasing trend. The leaf photosynthetic water use efficiency decreased on DHW days because the net photosynthesis rate was reduced for HN6119, but the transpiration rate increased for GY5218 and JM325. HN6119 showed a significant positive correlation between physiological parameters, while GY5218 and JM325 showed a poor correlation after being affected by DHW conditions. The effect of artificial simulation under mild and severe DHW stress on the thousand kernel weight (TKW) of HN6119, GY5218 and JM325 was 0.01%, 3.51%, 3.57% and 0.36%, 8.12%, 8.84%, respectively. HN6119 showed better resistance to DHW, followed by GY5218, and JM325 showed the weakest resistance. Public Library of Science 2022-10-05 /pmc/articles/PMC9534427/ /pubmed/36197886 http://dx.doi.org/10.1371/journal.pone.0274118 Text en © 2022 Kang et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kang, Xiyan Le, Zhangyan Li, Chunqiang Dai, Liqin Quan, Chang Shi, Minghua Liao, Rongwei Study on the different responses of different winter wheat cultivars to dry hot wind |
title | Study on the different responses of different winter wheat cultivars to dry hot wind |
title_full | Study on the different responses of different winter wheat cultivars to dry hot wind |
title_fullStr | Study on the different responses of different winter wheat cultivars to dry hot wind |
title_full_unstemmed | Study on the different responses of different winter wheat cultivars to dry hot wind |
title_short | Study on the different responses of different winter wheat cultivars to dry hot wind |
title_sort | study on the different responses of different winter wheat cultivars to dry hot wind |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534427/ https://www.ncbi.nlm.nih.gov/pubmed/36197886 http://dx.doi.org/10.1371/journal.pone.0274118 |
work_keys_str_mv | AT kangxiyan studyonthedifferentresponsesofdifferentwinterwheatcultivarstodryhotwind AT lezhangyan studyonthedifferentresponsesofdifferentwinterwheatcultivarstodryhotwind AT lichunqiang studyonthedifferentresponsesofdifferentwinterwheatcultivarstodryhotwind AT dailiqin studyonthedifferentresponsesofdifferentwinterwheatcultivarstodryhotwind AT quanchang studyonthedifferentresponsesofdifferentwinterwheatcultivarstodryhotwind AT shiminghua studyonthedifferentresponsesofdifferentwinterwheatcultivarstodryhotwind AT liaorongwei studyonthedifferentresponsesofdifferentwinterwheatcultivarstodryhotwind |