Cargando…
Predictive modeling for suspicious content identification on Twitter
The wide popularity of Twitter as a medium of exchanging activities, entertainment, and information is attracted spammers to discover it as a stage to spam clients and spread misinformation. It poses the challenge to the researchers to identify malicious content and user profiles over Twitter such t...
Autores principales: | Gangwar, Surendra Singh, Rathore, Santosh Singh, Chouhan, Satyendra Singh, Soni, Sanskar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534460/ https://www.ncbi.nlm.nih.gov/pubmed/36217359 http://dx.doi.org/10.1007/s13278-022-00977-7 |
Ejemplares similares
-
TextConvoNet: a convolutional neural network based architecture for text classification
por: Soni, Sanskar, et al.
Publicado: (2022) -
Fault prediction modeling for the prediction of number of software faults
por: Rathore, Santosh Singh, et al.
Publicado: (2019) -
Suspiciousness
Publicado: (1867) -
Suspiciousness
Publicado: (1878) -
Analysis of Fluoride-Free Content on Twitter: Topic Modeling Study
por: Lotto, Matheus, et al.
Publicado: (2023)