Cargando…

NIR-photocatalytic regulation of arthritic synovial microenvironment

Synovial microenvironment (SME) plays a vital role in the formation of synovial pannus and the induction of cartilage destruction in arthritis. In this work, a concept of the photocatalytic regulation of SME is proposed for arthritis treatment, and monodispersive hydrogen–doped titanium dioxide nano...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Bin, Zeng, Lingting, Chen, Danyang, Xie, Songqing, Jin, Zhaokui, Li, Guanglin, Tang, Wei, He, Qianjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534508/
https://www.ncbi.nlm.nih.gov/pubmed/36197972
http://dx.doi.org/10.1126/sciadv.abq0959
Descripción
Sumario:Synovial microenvironment (SME) plays a vital role in the formation of synovial pannus and the induction of cartilage destruction in arthritis. In this work, a concept of the photocatalytic regulation of SME is proposed for arthritis treatment, and monodispersive hydrogen–doped titanium dioxide nanorods with a rutile single-crystal structure are developed by a full-solution method to achieve near infrared–photocatalytic generation of hydrogen molecules and simultaneous depletion of overexpressed lactic acid (LA) for realizing SME regulation in a collagen-induced mouse model of rheumatoid arthritis. Mechanistically, locally generated hydrogen molecules scavenge overexpressed reactive oxygen species to mediate the anti-inflammatory polarization of macrophages, while the simultaneous photocatalytic depletion of overexpressed LA inhibits the inflammatory/invasive phenotypes of synoviocytes and macrophages and ameliorates the abnormal proliferation of synoviocytes, thereby remarkably preventing the synovial pannus formation and cartilage destruction. The proposed catalysis-mediated SME regulation strategy will open a window to realize facile and efficient arthritis treatment.