Cargando…
MTEDS: Multivariant Time Series-Based Encoder-Decoder System for Anomaly Detection
Intrusion detection systems examine the computer or network for potential security vulnerabilities. Time series data is real-valued. The nature of the data influences the type of anomaly detection. As a result, network anomalies are operations that deviate from the norm. These anomalies can cause a...
Autores principales: | Reyana, A., Kautish, Sandeep, Yahia, I. S., Mohamed, Ali Wagdy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534607/ https://www.ncbi.nlm.nih.gov/pubmed/36211006 http://dx.doi.org/10.1155/2022/4728063 |
Ejemplares similares
-
A Novel Encoder-Decoder Model for Multivariate Time Series Forecasting
por: Zhang, Huihui, et al.
Publicado: (2022) -
Clinical Data Analysis for Prediction of Cardiovascular Disease Using Machine Learning Techniques
por: Nadakinamani, Rajkumar Gangappa, et al.
Publicado: (2022) -
High-performance association rule mining: Mortality prediction model for cardiovascular patients with COVID-19 patterns
por: Nadakinamani, Rajkumar G., et al.
Publicado: (2023) -
Lightweight Long Short-Term Memory Variational Auto-Encoder for Multivariate Time Series Anomaly Detection in Industrial Control Systems
por: Fährmann, Daniel, et al.
Publicado: (2022) -
Ensemble Neuroevolution-Based Approach for Multivariate Time Series Anomaly Detection
por: Faber, Kamil, et al.
Publicado: (2021)