Cargando…

A Novel Feature Selection with Hybrid Deep Learning Based Heart Disease Detection and Classification in the e-Healthcare Environment

With the advancements in data mining, wearables, and cloud computing, online disease diagnosis services have been widely employed in the e-healthcare environment and improved the quality of the services. The e-healthcare services help to reduce the death rate by the earlier identification of the dis...

Descripción completa

Detalles Bibliográficos
Autores principales: B., Dwarakanath, M., Latha, R., Annamalai, Kallimani, Jagadish S., Walia, Ranjan, Belete, Birhanu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534609/
https://www.ncbi.nlm.nih.gov/pubmed/36210997
http://dx.doi.org/10.1155/2022/1167494
Descripción
Sumario:With the advancements in data mining, wearables, and cloud computing, online disease diagnosis services have been widely employed in the e-healthcare environment and improved the quality of the services. The e-healthcare services help to reduce the death rate by the earlier identification of the diseases. Simultaneously, heart disease (HD) is a deadly disorder, and patient survival depends on early diagnosis of HD. Early HD diagnosis and categorization play a key role in the analysis of clinical data. In the context of e-healthcare, we provide a novel feature selection with hybrid deep learning-based heart disease detection and classification (FSHDL-HDDC) model. The two primary preprocessing processes of the FSHDL-HDDC approach are data normalisation and the replacement of missing values. The FSHDL-HDDC method also necessitates the development of a feature selection method based on the elite opposition-based squirrel searchalgorithm (EO-SSA) in order to determine the optimal subset of features. Moreover, an attention-based convolutional neural network (ACNN) with long short-term memory (LSTM), called (ACNN-LSTM) model, is utilized for the detection of HD by using medical data. An extensive experimental study is performed to ensure the improved classification performance of the FSHDL-HDDC technique. A detailed comparison study reported the betterment of the FSHDL-HDDC method on existing techniques interms of different performance measures. The suggested system, the FSHDL-HDDC, has reached its maximum level of accuracy, which is 0.9772.