Cargando…
Differentiating Glioblastoma Multiforme from Brain Metastases Using Multidimensional Radiomics Features Derived from MRI and Multiple Machine Learning Models
Due to different treatment strategies, it is extremely important to differentiate between glioblastoma multiforme (GBM) and brain metastases (MET). It often proves difficult to distinguish between GBM and MET using MRI due to their similar appearance on the imaging modalities. Surgical methods are s...
Autores principales: | Bijari, Salar, Jahanbakhshi, Amin, Hajishafiezahramini, Parham, Abdolmaleki, Parviz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534611/ https://www.ncbi.nlm.nih.gov/pubmed/36212721 http://dx.doi.org/10.1155/2022/2016006 |
Ejemplares similares
-
MRI radiomic features of peritumoral edema may predict the recurrence sites of glioblastoma multiforme
por: Long, Hao, et al.
Publicado: (2023) -
Supratentorial glioblastoma multiforme with spinal metastases
por: Shah, Abhidha, et al.
Publicado: (2010) -
Differentiation Between Glioblastoma Multiforme and Metastasis From the Lungs and Other Sites Using Combined Clinical/Routine MRI Radiomics
por: Han, Yuqi, et al.
Publicado: (2021) -
Up-Regulation of Hsa-miR-11181 in Glioblastoma Multiforme
as A Regulator of AKT and TGFBR1 Signalling
por: Dabiri, Hamed, et al.
Publicado: (2021) -
Quality of Radiomic Features in Glioblastoma Multiforme: Impact of Semi-Automated Tumor Segmentation Software
por: Lee, Myungeun, et al.
Publicado: (2017)