Cargando…
Sparse Spatial-Temporal Emotion Graph Convolutional Network for Video Emotion Recognition
Video emotion recognition has attracted increasing attention. Most existing approaches are based on the spatial features extracted from video frames. The context information and their relationships in videos are often ignored. Thus, the performance of existing approaches is restricted. In this study...
Autores principales: | Liu, Xiaodong, Xu, Huating, Wang, Miao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534632/ https://www.ncbi.nlm.nih.gov/pubmed/36211003 http://dx.doi.org/10.1155/2022/3518879 |
Ejemplares similares
-
Region Dual Attention-Based Video Emotion Recognition
por: Liu, Xiaodong, et al.
Publicado: (2022) -
Learning joints relation graphs for video action recognition
por: Liu, Xiaodong, et al.
Publicado: (2022) -
Skeleton-Based Emotion Recognition Based on Two-Stream Self-Attention Enhanced Spatial-Temporal Graph Convolutional Network
por: Shi, Jiaqi, et al.
Publicado: (2020) -
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
por: Liu, Shaohua, et al.
Publicado: (2021) -
Hierarchical Attention-Based Multimodal Fusion Network for Video Emotion Recognition
por: Liu, Xiaodong, et al.
Publicado: (2021)