Cargando…
N-type calcium channel and renal injury
Accumulating evidences indicated that voltage-gated calcium channels (VDCC), including L-, T-, N-, and P/Q-type, are present in kidney and contribute to renal injury during various chronic diseases trough different mechanisms. As a voltage-gated calcium channel, N-type calcium channel was firstly be...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534814/ https://www.ncbi.nlm.nih.gov/pubmed/35416563 http://dx.doi.org/10.1007/s11255-022-03183-8 |
Sumario: | Accumulating evidences indicated that voltage-gated calcium channels (VDCC), including L-, T-, N-, and P/Q-type, are present in kidney and contribute to renal injury during various chronic diseases trough different mechanisms. As a voltage-gated calcium channel, N-type calcium channel was firstly been founded predominately distributed on nerve endings which control neurotransmitter releases. Since sympathetic nerve is distributed along renal afferent and efferent arterioles, N-type calcium channel blockade on sympathetic nerve terminals would bring renal dynamic improvement by dilating both arterioles and reducing glomerular pressure. In addition, large body of scientific research indicated that neurotransmitters, such as norepinephrine, releases by activating N-type calcium channel can trigger inflammatory and fibrotic signaling pathways in kidney. Interestingly, we recently demonstrated that N-type calcium channel is also expressed on podocytes and may directly contribute to podocyte injury in denervated animal models. In this paper, we will summarize our current knowledge regarding renal N-type calcium channels, and discuss how they might contribute to the river that terminates in renal injury. |
---|