Cargando…
Learning new physics efficiently with nonparametric methods
We present a machine learning approach for model-independent new physics searches. The corresponding algorithm is powered by recent large-scale implementations of kernel methods, nonparametric learning algorithms that can approximate any continuous function given enough data. Based on the original p...
Autores principales: | Letizia, Marco, Losapio, Gianvito, Rando, Marco, Grosso, Gaia, Wulzer, Andrea, Pierini, Maurizio, Zanetti, Marco, Rosasco, Lorenzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534824/ https://www.ncbi.nlm.nih.gov/pubmed/36212113 http://dx.doi.org/10.1140/epjc/s10052-022-10830-y |
Ejemplares similares
-
Learning new physics efficiently with nonparametric methods
por: Letizia, Marco, et al.
Publicado: (2022) -
Learning new physics from an imperfect machine
por: D’Agnolo, Raffaele Tito, et al.
Publicado: (2022) -
Fast kernel methods for Data Quality Monitoring as a goodness-of-fit test
por: Grosso, Gaia, et al.
Publicado: (2023) -
Learning Multivariate New Physics
por: D'Agnolo, Raffaele Tito, et al.
Publicado: (2019) -
Learning New Physics from an Imperfect Machine
por: d'Agnolo, Raffaele Tito, et al.
Publicado: (2021)