Cargando…
Tracing the lactate shuttle to the mitochondrial reticulum
Isotope tracer infusion studies employing lactate, glucose, glycerol, and fatty acid isotope tracers were central to the deduction and demonstration of the Lactate Shuttle at the whole-body level. In concert with the ability to perform tissue metabolite concentration measurements, as well as determi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534995/ https://www.ncbi.nlm.nih.gov/pubmed/36075947 http://dx.doi.org/10.1038/s12276-022-00802-3 |
_version_ | 1784802675427115008 |
---|---|
author | Brooks, George A. Curl, Casey C. Leija, Robert G. Osmond, Adam D. Duong, Justin J. Arevalo, Jose A. |
author_facet | Brooks, George A. Curl, Casey C. Leija, Robert G. Osmond, Adam D. Duong, Justin J. Arevalo, Jose A. |
author_sort | Brooks, George A. |
collection | PubMed |
description | Isotope tracer infusion studies employing lactate, glucose, glycerol, and fatty acid isotope tracers were central to the deduction and demonstration of the Lactate Shuttle at the whole-body level. In concert with the ability to perform tissue metabolite concentration measurements, as well as determinations of unidirectional and net metabolite exchanges by means of arterial–venous difference (a-v) and blood flow measurements across tissue beds including skeletal muscle, the heart and the brain, lactate shuttling within organs and tissues was made evident. From an extensive body of work on men and women, resting or exercising, before or after endurance training, at sea level or high altitude, we now know that Organ–Organ, Cell–Cell, and Intracellular Lactate Shuttles operate continuously. By means of lactate shuttling, fuel-energy substrates can be exchanged between producer (driver) cells, such as those in skeletal muscle, and consumer (recipient) cells, such as those in the brain, heart, muscle, liver and kidneys. Within tissues, lactate can be exchanged between white and red fibers within a muscle bed and between astrocytes and neurons in the brain. Within cells, lactate can be exchanged between the cytosol and mitochondria and between the cytosol and peroxisomes. Lactate shuttling between driver and recipient cells depends on concentration gradients created by the mitochondrial respiratory apparatus in recipient cells for oxidative disposal of lactate. |
format | Online Article Text |
id | pubmed-9534995 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-95349952022-10-20 Tracing the lactate shuttle to the mitochondrial reticulum Brooks, George A. Curl, Casey C. Leija, Robert G. Osmond, Adam D. Duong, Justin J. Arevalo, Jose A. Exp Mol Med Review Article Isotope tracer infusion studies employing lactate, glucose, glycerol, and fatty acid isotope tracers were central to the deduction and demonstration of the Lactate Shuttle at the whole-body level. In concert with the ability to perform tissue metabolite concentration measurements, as well as determinations of unidirectional and net metabolite exchanges by means of arterial–venous difference (a-v) and blood flow measurements across tissue beds including skeletal muscle, the heart and the brain, lactate shuttling within organs and tissues was made evident. From an extensive body of work on men and women, resting or exercising, before or after endurance training, at sea level or high altitude, we now know that Organ–Organ, Cell–Cell, and Intracellular Lactate Shuttles operate continuously. By means of lactate shuttling, fuel-energy substrates can be exchanged between producer (driver) cells, such as those in skeletal muscle, and consumer (recipient) cells, such as those in the brain, heart, muscle, liver and kidneys. Within tissues, lactate can be exchanged between white and red fibers within a muscle bed and between astrocytes and neurons in the brain. Within cells, lactate can be exchanged between the cytosol and mitochondria and between the cytosol and peroxisomes. Lactate shuttling between driver and recipient cells depends on concentration gradients created by the mitochondrial respiratory apparatus in recipient cells for oxidative disposal of lactate. Nature Publishing Group UK 2022-09-08 /pmc/articles/PMC9534995/ /pubmed/36075947 http://dx.doi.org/10.1038/s12276-022-00802-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Review Article Brooks, George A. Curl, Casey C. Leija, Robert G. Osmond, Adam D. Duong, Justin J. Arevalo, Jose A. Tracing the lactate shuttle to the mitochondrial reticulum |
title | Tracing the lactate shuttle to the mitochondrial reticulum |
title_full | Tracing the lactate shuttle to the mitochondrial reticulum |
title_fullStr | Tracing the lactate shuttle to the mitochondrial reticulum |
title_full_unstemmed | Tracing the lactate shuttle to the mitochondrial reticulum |
title_short | Tracing the lactate shuttle to the mitochondrial reticulum |
title_sort | tracing the lactate shuttle to the mitochondrial reticulum |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534995/ https://www.ncbi.nlm.nih.gov/pubmed/36075947 http://dx.doi.org/10.1038/s12276-022-00802-3 |
work_keys_str_mv | AT brooksgeorgea tracingthelactateshuttletothemitochondrialreticulum AT curlcaseyc tracingthelactateshuttletothemitochondrialreticulum AT leijarobertg tracingthelactateshuttletothemitochondrialreticulum AT osmondadamd tracingthelactateshuttletothemitochondrialreticulum AT duongjustinj tracingthelactateshuttletothemitochondrialreticulum AT arevalojosea tracingthelactateshuttletothemitochondrialreticulum |