Cargando…
Predicting asthma attacks using connected mobile devices and machine learning: the AAMOS-00 observational study protocol
INTRODUCTION: Supported self-management empowering people with asthma to detect early deterioration and take timely action reduces the risk of asthma attacks. Smartphones and smart monitoring devices coupled with machine learning could enhance self-management by predicting asthma attacks and providi...
Autores principales: | Tsang, Kevin Cheuk Him, Pinnock, Hilary, Wilson, Andrew M, Salvi, Dario, Shah, Syed Ahmar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535155/ https://www.ncbi.nlm.nih.gov/pubmed/36192103 http://dx.doi.org/10.1136/bmjopen-2022-064166 |
Ejemplares similares
-
Home monitoring with connected mobile devices for asthma attack prediction with machine learning
por: Tsang, Kevin C. H., et al.
Publicado: (2023) -
Predicting asthma attacks in primary care: protocol for developing a machine learning-based prediction model
por: Tibble, Holly, et al.
Publicado: (2019) -
Application of Machine Learning Algorithms for Asthma Management with mHealth: A Clinical Review
por: Tsang, Kevin C H, et al.
Publicado: (2022) -
Using decision support for population tracking of adherence to recommended asthma guidelines
por: Ahmed, Sara, et al.
Publicado: (2014) -
Validating childhood asthma in an epidemiological study using linked electronic patient records
por: Cornish, Rosaleen P, et al.
Publicado: (2014)