Cargando…

Intraperitoneal administration for sustained photoacoustic contrast agent imaging

Photoacoustic (PA) imaging at 1064 nm in the second near-infrared (NIR-II) has attracted recent attention. We recently reported a surfactant-based formulation of a NIR-II dye (BIBDAH) for NIR-II PA contrast. Here, we investigated BIBDAH as a NIR-II PA contrast agent for longitudinal preclinical PA i...

Descripción completa

Detalles Bibliográficos
Autores principales: Kilian, Hailey I., Ma, Chenshuo, Zhang, Huijuan, Chen, Maomao, Nilam, Anoop, Quinn, Breandan, Tang, Yuqi, Xia, Jun, Yao, Junjie, Lovell, Jonathan F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535324/
https://www.ncbi.nlm.nih.gov/pubmed/36213764
http://dx.doi.org/10.1016/j.pacs.2022.100406
Descripción
Sumario:Photoacoustic (PA) imaging at 1064 nm in the second near-infrared (NIR-II) has attracted recent attention. We recently reported a surfactant-based formulation of a NIR-II dye (BIBDAH) for NIR-II PA contrast. Here, we investigated BIBDAH as a NIR-II PA contrast agent for longitudinal preclinical PA imaging. When administered to mice by the conventional intravenous (I.V.) route, BIBDAH was rapidly cleared from circulation, as indicated by a decrease in NIR-II absorption in sampled plasma. Conversely, when mice were injected with BIBDAH by the intraperitoneal (I.P.) route, peak NIR-II absorption levels in plasma were lower initially, but there was a sustained dye presence that resulted in a more consistent concentration of dye in plasma over 2 days. Increasing the I.P. injection dose and volume resulted in increased NIR-II area under the curve (AUC) in serum. Bimodal PA and ultrasound imaging reflected these results, showing a rapid decrease in PA signal in blood with I.V. administration, but permitting sustained imaging with I.P. administration. These results show that I.P. administration can be considered as an administration route in preclinical animal studies for improved longitudinal observation with more consistent contrast signal intensity.