Cargando…
Electroencephalogram signals emotion recognition based on convolutional neural network-recurrent neural network framework with channel-temporal attention mechanism for older adults
Reminiscence and conversation between older adults and younger volunteers using past photographs are very effective in improving the emotional state of older adults and alleviating depression. However, we need to evaluate the emotional state of the older adult while conversing on the past photograph...
Autores principales: | Jiang, Lei, Siriaraya, Panote, Choi, Dongeun, Zeng, Fangmeng, Kuwahara, Noriaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535340/ https://www.ncbi.nlm.nih.gov/pubmed/36212045 http://dx.doi.org/10.3389/fnagi.2022.945024 |
Ejemplares similares
-
Emotion Recognition Using Electroencephalography Signals of Older People for Reminiscence Therapy
por: Jiang, Lei, et al.
Publicado: (2022) -
A Library of Old Photos Supporting Conversation of Two Generations Serving Reminiscence Therapy
por: Jiang, Lei, et al.
Publicado: (2021) -
Personality first in emotion: a deep neural network based on electroencephalogram channel attention for cross-subject emotion recognition
por: Tian, Zhihang, et al.
Publicado: (2021) -
Hierarchical Spatiotemporal Electroencephalogram Feature Learning and Emotion Recognition With Attention-Based Antagonism Neural Network
por: Zhang, Pengwei, et al.
Publicado: (2021) -
Action Recognition by an Attention-Aware Temporal Weighted Convolutional Neural Network
por: Wang, Le, et al.
Publicado: (2018)