Cargando…

Mono- and Bimetallic Nanoparticles for Catalytic Degradation of Hazardous Organic Dyes and Antibacterial Applications

[Image: see text] In the present work, gold (Au), silver (Ag), and copper (Cu) based mono- and bimetallic NPs are prepared using a cost-effective facile wet chemical route. The pH for the synthesis is optimized in accordance with the optical spectra and supported by the finite difference time domain...

Descripción completa

Detalles Bibliográficos
Autores principales: Padre, Shilpa Molakkalu, Kiruthika, S., Mundinamani, Shridhar, Ravikirana, Surabhi, Srivathsava, Jeong, Jong-Ryul, Eshwarappa, Kunabevu Mallikarjunappa, Murari, Mudiyaru Subrahmanya, Shetty, Vignesh, Ballal, Mamatha, S. C., Gurumurthy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535655/
https://www.ncbi.nlm.nih.gov/pubmed/36211055
http://dx.doi.org/10.1021/acsomega.2c03784
Descripción
Sumario:[Image: see text] In the present work, gold (Au), silver (Ag), and copper (Cu) based mono- and bimetallic NPs are prepared using a cost-effective facile wet chemical route. The pH for the synthesis is optimized in accordance with the optical spectra and supported by the finite difference time domain simulation studies. FESEM and TEM micrographs are used to analyze the morphology of the prepared nanoparticles. TEM images of bimetallic nanoparticles (BMPs) verified their bimetallic nature. XRD studies confirmed the formation of fcc-structured mono- and bimetallic NPs. Photoluminescence studies of the as-synthesized NPs are in good agreement with the previous publications. These synthesized NPs showed enhanced catalytic activity for the reduction/degradation of 4-nitrophenol, rhodamine B, and indigo carmine dyes in the presence of sodium borohydride (NaBH(4)) compared to NaBH(4) alone. For the reduction of 4-nitrophenol, Au, Cu, and CuAg nanoparticles exhibited good catalytic efficiency compared to others, whereas for the degradation of rhodamine B and indigo carmine dyes the catalytic efficiency is comparatively high for CuAg BMPs. Furthermore, the antibacterial assay is carried out, and Ag NPs display effective antibacterial activity against Klebsiella pneumoniae, Salmonella ser. Typhimurium, Acinetobacter baumannii, Shigella flexneri, and Pseudomonas aeruginosa.