Cargando…
In-Reservoir Physical Processes Modulate Aqueous and Biological Methylmercury Export from a Seasonally Anoxic Reservoir
[Image: see text] Anoxic conditions within reservoirs related to thermal stratification and oxygen depletion lead to methylmercury (MeHg) production, a key process governing the uptake of mercury in aquatic food webs. Once formed within a reservoir, the timing and magnitude of the biological uptake...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535939/ https://www.ncbi.nlm.nih.gov/pubmed/36107858 http://dx.doi.org/10.1021/acs.est.2c03958 |
_version_ | 1784802884403068928 |
---|---|
author | Baldwin, Austin K. Eagles-Smith, Collin A. Willacker, James J. Poulin, Brett A. Krabbenhoft, David P. Naymik, Jesse Tate, Michael T. Bates, Dain Gastelecutto, Nick Hoovestol, Charles Larsen, Chris Yoder, Alysa M. Chandler, James Myers, Ralph |
author_facet | Baldwin, Austin K. Eagles-Smith, Collin A. Willacker, James J. Poulin, Brett A. Krabbenhoft, David P. Naymik, Jesse Tate, Michael T. Bates, Dain Gastelecutto, Nick Hoovestol, Charles Larsen, Chris Yoder, Alysa M. Chandler, James Myers, Ralph |
author_sort | Baldwin, Austin K. |
collection | PubMed |
description | [Image: see text] Anoxic conditions within reservoirs related to thermal stratification and oxygen depletion lead to methylmercury (MeHg) production, a key process governing the uptake of mercury in aquatic food webs. Once formed within a reservoir, the timing and magnitude of the biological uptake of MeHg and the relative importance of MeHg export in water versus biological compartments remain poorly understood. We examined the relations between the reservoir stratification state, anoxia, and the concentrations and export loads of MeHg in aqueous and biological compartments at the outflow locations of two reservoirs of the Hells Canyon Complex (Snake River, Idaho-Oregon). Results show that (1) MeHg concentrations in filter-passing water, zooplankton, suspended particles, and detritus increased in response to reservoir destratification; (2) zooplankton MeHg strongly correlated with MeHg in filter-passing water during destratification; (3) reservoir anoxia appeared to be a key control on MeHg export; and (4) biological MeHg, primarily in zooplankton, accounted for only 5% of total MeHg export from the reservoirs (the remainder being aqueous compartments). These results improve our understanding of the role of biological incorporation of MeHg and the subsequent downstream release from seasonally stratified reservoirs and demonstrate that in-reservoir physical processes strongly influence MeHg incorporation at the base of the aquatic food web. |
format | Online Article Text |
id | pubmed-9535939 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-95359392022-10-07 In-Reservoir Physical Processes Modulate Aqueous and Biological Methylmercury Export from a Seasonally Anoxic Reservoir Baldwin, Austin K. Eagles-Smith, Collin A. Willacker, James J. Poulin, Brett A. Krabbenhoft, David P. Naymik, Jesse Tate, Michael T. Bates, Dain Gastelecutto, Nick Hoovestol, Charles Larsen, Chris Yoder, Alysa M. Chandler, James Myers, Ralph Environ Sci Technol [Image: see text] Anoxic conditions within reservoirs related to thermal stratification and oxygen depletion lead to methylmercury (MeHg) production, a key process governing the uptake of mercury in aquatic food webs. Once formed within a reservoir, the timing and magnitude of the biological uptake of MeHg and the relative importance of MeHg export in water versus biological compartments remain poorly understood. We examined the relations between the reservoir stratification state, anoxia, and the concentrations and export loads of MeHg in aqueous and biological compartments at the outflow locations of two reservoirs of the Hells Canyon Complex (Snake River, Idaho-Oregon). Results show that (1) MeHg concentrations in filter-passing water, zooplankton, suspended particles, and detritus increased in response to reservoir destratification; (2) zooplankton MeHg strongly correlated with MeHg in filter-passing water during destratification; (3) reservoir anoxia appeared to be a key control on MeHg export; and (4) biological MeHg, primarily in zooplankton, accounted for only 5% of total MeHg export from the reservoirs (the remainder being aqueous compartments). These results improve our understanding of the role of biological incorporation of MeHg and the subsequent downstream release from seasonally stratified reservoirs and demonstrate that in-reservoir physical processes strongly influence MeHg incorporation at the base of the aquatic food web. American Chemical Society 2022-09-15 2022-10-04 /pmc/articles/PMC9535939/ /pubmed/36107858 http://dx.doi.org/10.1021/acs.est.2c03958 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Baldwin, Austin K. Eagles-Smith, Collin A. Willacker, James J. Poulin, Brett A. Krabbenhoft, David P. Naymik, Jesse Tate, Michael T. Bates, Dain Gastelecutto, Nick Hoovestol, Charles Larsen, Chris Yoder, Alysa M. Chandler, James Myers, Ralph In-Reservoir Physical Processes Modulate Aqueous and Biological Methylmercury Export from a Seasonally Anoxic Reservoir |
title | In-Reservoir Physical
Processes Modulate Aqueous and
Biological Methylmercury Export from a Seasonally Anoxic Reservoir |
title_full | In-Reservoir Physical
Processes Modulate Aqueous and
Biological Methylmercury Export from a Seasonally Anoxic Reservoir |
title_fullStr | In-Reservoir Physical
Processes Modulate Aqueous and
Biological Methylmercury Export from a Seasonally Anoxic Reservoir |
title_full_unstemmed | In-Reservoir Physical
Processes Modulate Aqueous and
Biological Methylmercury Export from a Seasonally Anoxic Reservoir |
title_short | In-Reservoir Physical
Processes Modulate Aqueous and
Biological Methylmercury Export from a Seasonally Anoxic Reservoir |
title_sort | in-reservoir physical
processes modulate aqueous and
biological methylmercury export from a seasonally anoxic reservoir |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535939/ https://www.ncbi.nlm.nih.gov/pubmed/36107858 http://dx.doi.org/10.1021/acs.est.2c03958 |
work_keys_str_mv | AT baldwinaustink inreservoirphysicalprocessesmodulateaqueousandbiologicalmethylmercuryexportfromaseasonallyanoxicreservoir AT eaglessmithcollina inreservoirphysicalprocessesmodulateaqueousandbiologicalmethylmercuryexportfromaseasonallyanoxicreservoir AT willackerjamesj inreservoirphysicalprocessesmodulateaqueousandbiologicalmethylmercuryexportfromaseasonallyanoxicreservoir AT poulinbretta inreservoirphysicalprocessesmodulateaqueousandbiologicalmethylmercuryexportfromaseasonallyanoxicreservoir AT krabbenhoftdavidp inreservoirphysicalprocessesmodulateaqueousandbiologicalmethylmercuryexportfromaseasonallyanoxicreservoir AT naymikjesse inreservoirphysicalprocessesmodulateaqueousandbiologicalmethylmercuryexportfromaseasonallyanoxicreservoir AT tatemichaelt inreservoirphysicalprocessesmodulateaqueousandbiologicalmethylmercuryexportfromaseasonallyanoxicreservoir AT batesdain inreservoirphysicalprocessesmodulateaqueousandbiologicalmethylmercuryexportfromaseasonallyanoxicreservoir AT gastelecuttonick inreservoirphysicalprocessesmodulateaqueousandbiologicalmethylmercuryexportfromaseasonallyanoxicreservoir AT hoovestolcharles inreservoirphysicalprocessesmodulateaqueousandbiologicalmethylmercuryexportfromaseasonallyanoxicreservoir AT larsenchris inreservoirphysicalprocessesmodulateaqueousandbiologicalmethylmercuryexportfromaseasonallyanoxicreservoir AT yoderalysam inreservoirphysicalprocessesmodulateaqueousandbiologicalmethylmercuryexportfromaseasonallyanoxicreservoir AT chandlerjames inreservoirphysicalprocessesmodulateaqueousandbiologicalmethylmercuryexportfromaseasonallyanoxicreservoir AT myersralph inreservoirphysicalprocessesmodulateaqueousandbiologicalmethylmercuryexportfromaseasonallyanoxicreservoir |