Cargando…
Differentiation of carcinosarcoma from endometrial carcinoma on magnetic resonance imaging using deep learning
PURPOSE: To verify whether deep learning can be used to differentiate between carcinosarcomas (CSs) and endometrial carcinomas (ECs) using several magnetic resonance imaging (MRI) sequences. MATERIAL AND METHODS: This retrospective study included 52 patients with CS and 279 patients with EC. A deep-...
Autores principales: | Saida, Tsukasa, Mori, Kensaku, Hoshiai, Sodai, Sakai, Masafumi, Urushibara, Aiko, Ishiguro, Toshitaka, Satoh, Toyomi, Nakajima, Takahito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Termedia Publishing House
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536210/ https://www.ncbi.nlm.nih.gov/pubmed/36250139 http://dx.doi.org/10.5114/pjr.2022.119806 |
Ejemplares similares
-
Diagnosing Ovarian Cancer on MRI: A Preliminary Study Comparing Deep Learning and Radiologist Assessments
por: Saida, Tsukasa, et al.
Publicado: (2022) -
The efficacy of deep learning models in the diagnosis of endometrial cancer using MRI: a comparison with radiologists
por: Urushibara, Aiko, et al.
Publicado: (2022) -
Differences in the position of endometriosis-associated and non-associated ovarian cancer relative to the uterus
por: Saida, Tsukasa, et al.
Publicado: (2023) -
Pulmonary arterial pseudoaneurysm as an unusual complication of pulmonary actinomycosis: Two case reports
por: Urushibara, Aiko, et al.
Publicado: (2022) -
Clinical and MRI Characteristics of Uterine Cervical Adenocarcinoma: Its Variants and Mimics
por: Saida, Tsukasa, et al.
Publicado: (2019)