Cargando…
Soil microbial diversity and functional capacity associated with the production of edible mushroom Stropharia rugosoannulata in croplands
In recent years, a rare edible mushroom Stropharia rugosoannulata has become popular. S. rugosoannulata has the characteristics of easy cultivation, low cost, high output value, and low labor requirement, making its economic benefits significantly superior to those of other planting industries. Accu...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536307/ https://www.ncbi.nlm.nih.gov/pubmed/36213510 http://dx.doi.org/10.7717/peerj.14130 |
_version_ | 1784802958956822528 |
---|---|
author | Tang, Shaojun Fan, Tingting Jin, Lei Lei, Pin Shao, Chenxia Wu, Shenlian Yang, Yi He, Yuelin Ren, Rui Xu, Jun |
author_facet | Tang, Shaojun Fan, Tingting Jin, Lei Lei, Pin Shao, Chenxia Wu, Shenlian Yang, Yi He, Yuelin Ren, Rui Xu, Jun |
author_sort | Tang, Shaojun |
collection | PubMed |
description | In recent years, a rare edible mushroom Stropharia rugosoannulata has become popular. S. rugosoannulata has the characteristics of easy cultivation, low cost, high output value, and low labor requirement, making its economic benefits significantly superior to those of other planting industries. Accumulating research demonstrates that cultivating edible fungus is advantageous for farming soil. The present experiment used idle croplands in winter for S. rugosoannulata cultivation. We explored the effects of S. rugosoannulata cultivation on soil properties and soil microbial community structure in paddy and dry fields, respectively. We cultivated S. rugosoannulata in the fields after planting chili and rice, respectively. The results showed that Chili-S. rugosoannulata and Rice-S. rugosoannulata planting patterns increased the yield, quality and amino acid content of S. rugosoannulata. By analyzing the soil properties, we found that the Chili-S. rugosoannulata and Rice-S. rugosoannulata cropping patterns increased the total nitrogen, available phosphorus, soil organic carbon, and available potassium content of the soil. We used 16s amplicons for bacteria and internal transcribed spacer (ITS) region for fungi to analyze the microbial communities in rhizosphere soils. Notably, S. rugosoannulata cultivation significantly increased the abundance of beneficial microorganisms such as Chloroflexi, Cladosporium and Mortierella and reduce the abundance of Botryotrichumin and Archaeorhizomyces. We consider S. rugosoannulata cultivation in cropland can improve soil properties, regulate the community structure of soil microorganisms, increase the expression abundance of beneficial organisms and ultimately improve the S. rugosoannulata yield and lay a good foundation for a new round of crops after this edible mushroom cultivation. |
format | Online Article Text |
id | pubmed-9536307 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95363072022-10-07 Soil microbial diversity and functional capacity associated with the production of edible mushroom Stropharia rugosoannulata in croplands Tang, Shaojun Fan, Tingting Jin, Lei Lei, Pin Shao, Chenxia Wu, Shenlian Yang, Yi He, Yuelin Ren, Rui Xu, Jun PeerJ Agricultural Science In recent years, a rare edible mushroom Stropharia rugosoannulata has become popular. S. rugosoannulata has the characteristics of easy cultivation, low cost, high output value, and low labor requirement, making its economic benefits significantly superior to those of other planting industries. Accumulating research demonstrates that cultivating edible fungus is advantageous for farming soil. The present experiment used idle croplands in winter for S. rugosoannulata cultivation. We explored the effects of S. rugosoannulata cultivation on soil properties and soil microbial community structure in paddy and dry fields, respectively. We cultivated S. rugosoannulata in the fields after planting chili and rice, respectively. The results showed that Chili-S. rugosoannulata and Rice-S. rugosoannulata planting patterns increased the yield, quality and amino acid content of S. rugosoannulata. By analyzing the soil properties, we found that the Chili-S. rugosoannulata and Rice-S. rugosoannulata cropping patterns increased the total nitrogen, available phosphorus, soil organic carbon, and available potassium content of the soil. We used 16s amplicons for bacteria and internal transcribed spacer (ITS) region for fungi to analyze the microbial communities in rhizosphere soils. Notably, S. rugosoannulata cultivation significantly increased the abundance of beneficial microorganisms such as Chloroflexi, Cladosporium and Mortierella and reduce the abundance of Botryotrichumin and Archaeorhizomyces. We consider S. rugosoannulata cultivation in cropland can improve soil properties, regulate the community structure of soil microorganisms, increase the expression abundance of beneficial organisms and ultimately improve the S. rugosoannulata yield and lay a good foundation for a new round of crops after this edible mushroom cultivation. PeerJ Inc. 2022-10-03 /pmc/articles/PMC9536307/ /pubmed/36213510 http://dx.doi.org/10.7717/peerj.14130 Text en ©2022 Tang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Agricultural Science Tang, Shaojun Fan, Tingting Jin, Lei Lei, Pin Shao, Chenxia Wu, Shenlian Yang, Yi He, Yuelin Ren, Rui Xu, Jun Soil microbial diversity and functional capacity associated with the production of edible mushroom Stropharia rugosoannulata in croplands |
title | Soil microbial diversity and functional capacity associated with the production of edible mushroom Stropharia rugosoannulata in croplands |
title_full | Soil microbial diversity and functional capacity associated with the production of edible mushroom Stropharia rugosoannulata in croplands |
title_fullStr | Soil microbial diversity and functional capacity associated with the production of edible mushroom Stropharia rugosoannulata in croplands |
title_full_unstemmed | Soil microbial diversity and functional capacity associated with the production of edible mushroom Stropharia rugosoannulata in croplands |
title_short | Soil microbial diversity and functional capacity associated with the production of edible mushroom Stropharia rugosoannulata in croplands |
title_sort | soil microbial diversity and functional capacity associated with the production of edible mushroom stropharia rugosoannulata in croplands |
topic | Agricultural Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536307/ https://www.ncbi.nlm.nih.gov/pubmed/36213510 http://dx.doi.org/10.7717/peerj.14130 |
work_keys_str_mv | AT tangshaojun soilmicrobialdiversityandfunctionalcapacityassociatedwiththeproductionofediblemushroomstrophariarugosoannulataincroplands AT fantingting soilmicrobialdiversityandfunctionalcapacityassociatedwiththeproductionofediblemushroomstrophariarugosoannulataincroplands AT jinlei soilmicrobialdiversityandfunctionalcapacityassociatedwiththeproductionofediblemushroomstrophariarugosoannulataincroplands AT leipin soilmicrobialdiversityandfunctionalcapacityassociatedwiththeproductionofediblemushroomstrophariarugosoannulataincroplands AT shaochenxia soilmicrobialdiversityandfunctionalcapacityassociatedwiththeproductionofediblemushroomstrophariarugosoannulataincroplands AT wushenlian soilmicrobialdiversityandfunctionalcapacityassociatedwiththeproductionofediblemushroomstrophariarugosoannulataincroplands AT yangyi soilmicrobialdiversityandfunctionalcapacityassociatedwiththeproductionofediblemushroomstrophariarugosoannulataincroplands AT heyuelin soilmicrobialdiversityandfunctionalcapacityassociatedwiththeproductionofediblemushroomstrophariarugosoannulataincroplands AT renrui soilmicrobialdiversityandfunctionalcapacityassociatedwiththeproductionofediblemushroomstrophariarugosoannulataincroplands AT xujun soilmicrobialdiversityandfunctionalcapacityassociatedwiththeproductionofediblemushroomstrophariarugosoannulataincroplands |