Cargando…
Evaluating Web-Based Automatic Transcription for Alzheimer Speech Data: Transcript Comparison and Machine Learning Analysis
BACKGROUND: Speech data for medical research can be collected noninvasively and in large volumes. Speech analysis has shown promise in diagnosing neurodegenerative disease. To effectively leverage speech data, transcription is important, as there is valuable information contained in lexical content....
Autores principales: | Soroski, Thomas, da Cunha Vasco, Thiago, Newton-Mason, Sally, Granby, Saffrin, Lewis, Caitlin, Harisinghani, Anuj, Rizzo, Matteo, Conati, Cristina, Murray, Gabriel, Carenini, Giuseppe, Field, Thalia S, Jang, Hyeju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536526/ https://www.ncbi.nlm.nih.gov/pubmed/36129754 http://dx.doi.org/10.2196/33460 |
Ejemplares similares
-
Classification of Alzheimer’s Disease Leveraging Multi-task Machine Learning Analysis of Speech and Eye-Movement Data
por: Jang, Hyeju, et al.
Publicado: (2021) -
Tracking COVID-19 Discourse on Twitter in North America: Infodemiology Study Using Topic Modeling and Aspect-Based Sentiment Analysis
por: Jang, Hyeju, et al.
Publicado: (2021) -
Semantic Coherence Dataset: Speech transcripts
por: Colla, Davide, et al.
Publicado: (2022) -
Tracking Public Attitudes Toward COVID-19 Vaccination on Tweets in Canada: Using Aspect-Based Sentiment Analysis
por: Jang, Hyeju, et al.
Publicado: (2022) -
ARTDeco: automatic readthrough transcription detection
por: Roth, Samuel J., et al.
Publicado: (2020)