Cargando…
Binary dwarf mongoose optimizer for solving high-dimensional feature selection problems
Selecting appropriate feature subsets is a vital task in machine learning. Its main goal is to remove noisy, irrelevant, and redundant feature subsets that could negatively impact the learning model’s accuracy and improve classification performance without information loss. Therefore, more advanced...
Autores principales: | Akinola, Olatunji A., Agushaka, Jeffrey O., Ezugwu, Absalom E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536540/ https://www.ncbi.nlm.nih.gov/pubmed/36201524 http://dx.doi.org/10.1371/journal.pone.0274850 |
Ejemplares similares
-
A hybrid binary dwarf mongoose optimization algorithm with simulated annealing for feature selection on high dimensional multi-class datasets
por: Akinola, Olatunji A., et al.
Publicado: (2022) -
Advanced dwarf mongoose optimization for solving CEC 2011 and CEC 2017 benchmark problems
por: Agushaka, Jeffrey O., et al.
Publicado: (2022) -
Improved Dwarf Mongoose Optimization for Constrained Engineering Design Problems
por: Agushaka, Jeffrey O., et al.
Publicado: (2022) -
Evolutionary binary feature selection using adaptive ebola optimization search algorithm for high-dimensional datasets
por: Oyelade, Olaide N., et al.
Publicado: (2023) -
Advanced arithmetic optimization algorithm for solving mechanical engineering design problems
por: Agushaka, Jeffrey O., et al.
Publicado: (2021)