Cargando…
Modality attention fusion model with hybrid multi-head self-attention for video understanding
Video question answering (Video-QA) is a subject undergoing intense study in Artificial Intelligence, which is one of the tasks which can evaluate such AI abilities. In this paper, we propose a Modality Attention Fusion framework with Hybrid Multi-head Self-attention (MAF-HMS). MAF-HMS focuses on th...
Autores principales: | Zhuang, Xuqiang, Liu, Fang’ai, Hou, Jian, Hao, Jianhua, Cai, Xiaohong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536548/ https://www.ncbi.nlm.nih.gov/pubmed/36201513 http://dx.doi.org/10.1371/journal.pone.0275156 |
Ejemplares similares
-
Multi-Modal Representation via Contrastive Learning with Attention Bottleneck Fusion and Attentive Statistics Features
por: Guo, Qinglang, et al.
Publicado: (2023) -
Session interest model for CTR prediction based on self-attention mechanism
por: Wang, Qianqian, et al.
Publicado: (2022) -
Multi-Modality Emotion Recognition Model with GAT-Based Multi-Head Inter-Modality Attention
por: Fu, Changzeng, et al.
Publicado: (2020) -
The multi-modal fusion in visual question answering: a review of attention mechanisms
por: Lu, Siyu, et al.
Publicado: (2023) -
Predicting disease genes based on multi-head attention fusion
por: Zhang, Linlin, et al.
Publicado: (2023)