Cargando…

Josephson diode effect from Cooper pair momentum in a topological semimetal

Cooper pairs in non-centrosymmetric superconductors can acquire finite centre-of-mass momentum in the presence of an external magnetic field. Recent theory predicts that such finite-momentum pairing can lead to an asymmetric critical current, where a dissipationless supercurrent can flow along one d...

Descripción completa

Detalles Bibliográficos
Autores principales: Pal, Banabir, Chakraborty, Anirban, Sivakumar, Pranava K., Davydova, Margarita, Gopi, Ajesh K., Pandeya, Avanindra K., Krieger, Jonas A., Zhang, Yang, Date, Mihir, Ju, Sailong, Yuan, Noah, Schröter, Niels B. M., Fu, Liang, Parkin, Stuart S. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537108/
https://www.ncbi.nlm.nih.gov/pubmed/36217362
http://dx.doi.org/10.1038/s41567-022-01699-5
_version_ 1784803126431186944
author Pal, Banabir
Chakraborty, Anirban
Sivakumar, Pranava K.
Davydova, Margarita
Gopi, Ajesh K.
Pandeya, Avanindra K.
Krieger, Jonas A.
Zhang, Yang
Date, Mihir
Ju, Sailong
Yuan, Noah
Schröter, Niels B. M.
Fu, Liang
Parkin, Stuart S. P.
author_facet Pal, Banabir
Chakraborty, Anirban
Sivakumar, Pranava K.
Davydova, Margarita
Gopi, Ajesh K.
Pandeya, Avanindra K.
Krieger, Jonas A.
Zhang, Yang
Date, Mihir
Ju, Sailong
Yuan, Noah
Schröter, Niels B. M.
Fu, Liang
Parkin, Stuart S. P.
author_sort Pal, Banabir
collection PubMed
description Cooper pairs in non-centrosymmetric superconductors can acquire finite centre-of-mass momentum in the presence of an external magnetic field. Recent theory predicts that such finite-momentum pairing can lead to an asymmetric critical current, where a dissipationless supercurrent can flow along one direction but not in the opposite one. Here we report the discovery of a giant Josephson diode effect in Josephson junctions formed from a type-II Dirac semimetal, NiTe(2). A distinguishing feature is that the asymmetry in the critical current depends sensitively on the magnitude and direction of an applied magnetic field and achieves its maximum value when the magnetic field is perpendicular to the current and is of the order of just 10 mT. Moreover, the asymmetry changes sign several times with an increasing field. These characteristic features are accounted for by a model based on finite-momentum Cooper pairing that largely originates from the Zeeman shift of spin-helical topological surface states. The finite pairing momentum is further established, and its value determined, from the evolution of the interference pattern under an in-plane magnetic field. The observed giant magnitude of the asymmetry in critical current and the clear exposition of its underlying mechanism paves the way to build novel superconducting computing devices using the Josephson diode effect.
format Online
Article
Text
id pubmed-9537108
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-95371082022-10-08 Josephson diode effect from Cooper pair momentum in a topological semimetal Pal, Banabir Chakraborty, Anirban Sivakumar, Pranava K. Davydova, Margarita Gopi, Ajesh K. Pandeya, Avanindra K. Krieger, Jonas A. Zhang, Yang Date, Mihir Ju, Sailong Yuan, Noah Schröter, Niels B. M. Fu, Liang Parkin, Stuart S. P. Nat Phys Article Cooper pairs in non-centrosymmetric superconductors can acquire finite centre-of-mass momentum in the presence of an external magnetic field. Recent theory predicts that such finite-momentum pairing can lead to an asymmetric critical current, where a dissipationless supercurrent can flow along one direction but not in the opposite one. Here we report the discovery of a giant Josephson diode effect in Josephson junctions formed from a type-II Dirac semimetal, NiTe(2). A distinguishing feature is that the asymmetry in the critical current depends sensitively on the magnitude and direction of an applied magnetic field and achieves its maximum value when the magnetic field is perpendicular to the current and is of the order of just 10 mT. Moreover, the asymmetry changes sign several times with an increasing field. These characteristic features are accounted for by a model based on finite-momentum Cooper pairing that largely originates from the Zeeman shift of spin-helical topological surface states. The finite pairing momentum is further established, and its value determined, from the evolution of the interference pattern under an in-plane magnetic field. The observed giant magnitude of the asymmetry in critical current and the clear exposition of its underlying mechanism paves the way to build novel superconducting computing devices using the Josephson diode effect. Nature Publishing Group UK 2022-08-15 2022 /pmc/articles/PMC9537108/ /pubmed/36217362 http://dx.doi.org/10.1038/s41567-022-01699-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Pal, Banabir
Chakraborty, Anirban
Sivakumar, Pranava K.
Davydova, Margarita
Gopi, Ajesh K.
Pandeya, Avanindra K.
Krieger, Jonas A.
Zhang, Yang
Date, Mihir
Ju, Sailong
Yuan, Noah
Schröter, Niels B. M.
Fu, Liang
Parkin, Stuart S. P.
Josephson diode effect from Cooper pair momentum in a topological semimetal
title Josephson diode effect from Cooper pair momentum in a topological semimetal
title_full Josephson diode effect from Cooper pair momentum in a topological semimetal
title_fullStr Josephson diode effect from Cooper pair momentum in a topological semimetal
title_full_unstemmed Josephson diode effect from Cooper pair momentum in a topological semimetal
title_short Josephson diode effect from Cooper pair momentum in a topological semimetal
title_sort josephson diode effect from cooper pair momentum in a topological semimetal
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537108/
https://www.ncbi.nlm.nih.gov/pubmed/36217362
http://dx.doi.org/10.1038/s41567-022-01699-5
work_keys_str_mv AT palbanabir josephsondiodeeffectfromcooperpairmomentuminatopologicalsemimetal
AT chakrabortyanirban josephsondiodeeffectfromcooperpairmomentuminatopologicalsemimetal
AT sivakumarpranavak josephsondiodeeffectfromcooperpairmomentuminatopologicalsemimetal
AT davydovamargarita josephsondiodeeffectfromcooperpairmomentuminatopologicalsemimetal
AT gopiajeshk josephsondiodeeffectfromcooperpairmomentuminatopologicalsemimetal
AT pandeyaavanindrak josephsondiodeeffectfromcooperpairmomentuminatopologicalsemimetal
AT kriegerjonasa josephsondiodeeffectfromcooperpairmomentuminatopologicalsemimetal
AT zhangyang josephsondiodeeffectfromcooperpairmomentuminatopologicalsemimetal
AT datemihir josephsondiodeeffectfromcooperpairmomentuminatopologicalsemimetal
AT jusailong josephsondiodeeffectfromcooperpairmomentuminatopologicalsemimetal
AT yuannoah josephsondiodeeffectfromcooperpairmomentuminatopologicalsemimetal
AT schroternielsbm josephsondiodeeffectfromcooperpairmomentuminatopologicalsemimetal
AT fuliang josephsondiodeeffectfromcooperpairmomentuminatopologicalsemimetal
AT parkinstuartsp josephsondiodeeffectfromcooperpairmomentuminatopologicalsemimetal