Cargando…
Photoplethysmography temporal marker-based machine learning classifier for anesthesia drug detection
Anesthesia drug overdose hazards and lack of gold standards in anesthesia monitoring lead to an urgent need for accurate anesthesia drug detection. To investigate the PPG waveform features affected by anesthesia drugs and develop a machine-learning classifier with high anesthesia drug sensitivity. T...
Autores principales: | Khalid, Syed Ghufran, Ali, Syed Mehmood, Liu, Haipeng, Qurashi, Aisha Ghazal, Ali, Uzma |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537122/ https://www.ncbi.nlm.nih.gov/pubmed/36063352 http://dx.doi.org/10.1007/s11517-022-02658-1 |
Ejemplares similares
-
Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches
por: Khalid, Syed Ghufran, et al.
Publicado: (2018) -
Classifying sepsis from photoplethysmography
por: Lombardi, Sara, et al.
Publicado: (2022) -
Machine learning of EEG spectra classifies unconsciousness during GABAergic anesthesia
por: Abel, John H., et al.
Publicado: (2021) -
Prediction of state anxiety by machine learning applied to photoplethysmography data
por: Perpetuini, David, et al.
Publicado: (2021) -
Temporal complexity in photoplethysmography and its influence on blood pressure
por: Xing, Xiaoman, et al.
Publicado: (2023)