Cargando…
Research on visual question answering based on dynamic memory network model of multiple attention mechanisms
Since the existing visual question answering model lacks long-term memory modules for answering complex questions, it is easy to cause the loss of effective information. In order to further improve the accuracy of the visual question answering model, this paper applies the multiple attention mechani...
Autores principales: | Miao, Yalin, He, Shuyun, Cheng, WenFang, Li, Guodong, Tong, Meng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537137/ https://www.ncbi.nlm.nih.gov/pubmed/36202900 http://dx.doi.org/10.1038/s41598-022-21149-9 |
Ejemplares similares
-
An Effective Dense Co-Attention Networks for Visual Question Answering
por: He, Shirong, et al.
Publicado: (2020) -
Deep Modular Bilinear Attention Network for Visual Question Answering
por: Yan, Feng, et al.
Publicado: (2022) -
Adversarial Learning with Bidirectional Attention for Visual Question Answering
por: Li, Qifeng, et al.
Publicado: (2021) -
Multi-Modal Explicit Sparse Attention Networks for Visual Question Answering
por: Guo, Zihan, et al.
Publicado: (2020) -
Parallel multi-head attention and term-weighted question embedding for medical visual question answering
por: Manmadhan, Sruthy, et al.
Publicado: (2023)