Cargando…

Samarium: from a distorted-fcc phase to melting under dynamic compression using in-situ x-ray diffraction

Lattice and electronic structure interactions for f-electrons are fundamental challenges for lanthanide equation of state development. Difficulties in first-principles calculations, such as density functional theory (DFT), emphasize the need for well-characterized experimental data. Here, we measure...

Descripción completa

Detalles Bibliográficos
Autores principales: Duwal, Sakun, McCoy, Chad A., Dolan III, Daniel H., Melton, Cody A., Knudson, Marcus D., Root, Seth, Hacking, Richard, Farfan, Bernardo, Johnson, Christopher, Alexander, C. Scott, Seagle, Christopher T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537147/
https://www.ncbi.nlm.nih.gov/pubmed/36202947
http://dx.doi.org/10.1038/s41598-022-21332-y
_version_ 1784803134582816768
author Duwal, Sakun
McCoy, Chad A.
Dolan III, Daniel H.
Melton, Cody A.
Knudson, Marcus D.
Root, Seth
Hacking, Richard
Farfan, Bernardo
Johnson, Christopher
Alexander, C. Scott
Seagle, Christopher T.
author_facet Duwal, Sakun
McCoy, Chad A.
Dolan III, Daniel H.
Melton, Cody A.
Knudson, Marcus D.
Root, Seth
Hacking, Richard
Farfan, Bernardo
Johnson, Christopher
Alexander, C. Scott
Seagle, Christopher T.
author_sort Duwal, Sakun
collection PubMed
description Lattice and electronic structure interactions for f-electrons are fundamental challenges for lanthanide equation of state development. Difficulties in first-principles calculations, such as density functional theory (DFT), emphasize the need for well-characterized experimental data. Here, we measure in-situ x-ray diffraction of shocked samarium (Sm) and temperature along the Hugoniot for the first time, providing direct evidence for phase transitions. We report direct evidence of a distorted fcc (dfcc) phase at 23 GPa. Shocked samarium melts from the dfcc phase starting at 33 GPa (1333 K), with complete melt at 40 GPa (1468 K). Previous work indicated shock melt at 27 GPa (1200 K), underscoring the significance of x-ray measurements for detecting phase transitions. Interestingly, our observed melting is in sharp contrast with the melting reported by a diamond anvil cell study. These experimental data can tightly constrain first principles calculations and serve as key touchstones for equation of state modeling.
format Online
Article
Text
id pubmed-9537147
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-95371472022-10-08 Samarium: from a distorted-fcc phase to melting under dynamic compression using in-situ x-ray diffraction Duwal, Sakun McCoy, Chad A. Dolan III, Daniel H. Melton, Cody A. Knudson, Marcus D. Root, Seth Hacking, Richard Farfan, Bernardo Johnson, Christopher Alexander, C. Scott Seagle, Christopher T. Sci Rep Article Lattice and electronic structure interactions for f-electrons are fundamental challenges for lanthanide equation of state development. Difficulties in first-principles calculations, such as density functional theory (DFT), emphasize the need for well-characterized experimental data. Here, we measure in-situ x-ray diffraction of shocked samarium (Sm) and temperature along the Hugoniot for the first time, providing direct evidence for phase transitions. We report direct evidence of a distorted fcc (dfcc) phase at 23 GPa. Shocked samarium melts from the dfcc phase starting at 33 GPa (1333 K), with complete melt at 40 GPa (1468 K). Previous work indicated shock melt at 27 GPa (1200 K), underscoring the significance of x-ray measurements for detecting phase transitions. Interestingly, our observed melting is in sharp contrast with the melting reported by a diamond anvil cell study. These experimental data can tightly constrain first principles calculations and serve as key touchstones for equation of state modeling. Nature Publishing Group UK 2022-10-06 /pmc/articles/PMC9537147/ /pubmed/36202947 http://dx.doi.org/10.1038/s41598-022-21332-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Duwal, Sakun
McCoy, Chad A.
Dolan III, Daniel H.
Melton, Cody A.
Knudson, Marcus D.
Root, Seth
Hacking, Richard
Farfan, Bernardo
Johnson, Christopher
Alexander, C. Scott
Seagle, Christopher T.
Samarium: from a distorted-fcc phase to melting under dynamic compression using in-situ x-ray diffraction
title Samarium: from a distorted-fcc phase to melting under dynamic compression using in-situ x-ray diffraction
title_full Samarium: from a distorted-fcc phase to melting under dynamic compression using in-situ x-ray diffraction
title_fullStr Samarium: from a distorted-fcc phase to melting under dynamic compression using in-situ x-ray diffraction
title_full_unstemmed Samarium: from a distorted-fcc phase to melting under dynamic compression using in-situ x-ray diffraction
title_short Samarium: from a distorted-fcc phase to melting under dynamic compression using in-situ x-ray diffraction
title_sort samarium: from a distorted-fcc phase to melting under dynamic compression using in-situ x-ray diffraction
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537147/
https://www.ncbi.nlm.nih.gov/pubmed/36202947
http://dx.doi.org/10.1038/s41598-022-21332-y
work_keys_str_mv AT duwalsakun samariumfromadistortedfccphasetomeltingunderdynamiccompressionusinginsituxraydiffraction
AT mccoychada samariumfromadistortedfccphasetomeltingunderdynamiccompressionusinginsituxraydiffraction
AT dolaniiidanielh samariumfromadistortedfccphasetomeltingunderdynamiccompressionusinginsituxraydiffraction
AT meltoncodya samariumfromadistortedfccphasetomeltingunderdynamiccompressionusinginsituxraydiffraction
AT knudsonmarcusd samariumfromadistortedfccphasetomeltingunderdynamiccompressionusinginsituxraydiffraction
AT rootseth samariumfromadistortedfccphasetomeltingunderdynamiccompressionusinginsituxraydiffraction
AT hackingrichard samariumfromadistortedfccphasetomeltingunderdynamiccompressionusinginsituxraydiffraction
AT farfanbernardo samariumfromadistortedfccphasetomeltingunderdynamiccompressionusinginsituxraydiffraction
AT johnsonchristopher samariumfromadistortedfccphasetomeltingunderdynamiccompressionusinginsituxraydiffraction
AT alexandercscott samariumfromadistortedfccphasetomeltingunderdynamiccompressionusinginsituxraydiffraction
AT seaglechristophert samariumfromadistortedfccphasetomeltingunderdynamiccompressionusinginsituxraydiffraction