Cargando…
Robustness of radiomics to variations in segmentation methods in multimodal brain MRI
Radiomics in neuroimaging uses fully automatic segmentation to delineate the anatomical areas for which radiomic features are computed. However, differences among these segmentation methods affect radiomic features to an unknown extent. A scan-rescan dataset (n = 46) of T1-weighted and diffusion ten...
Autores principales: | Poirot, M. G., Caan, M. W. A., Ruhe, H. G., Bjørnerud, A., Groote, I., Reneman, L., Marquering, H. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537186/ https://www.ncbi.nlm.nih.gov/pubmed/36202934 http://dx.doi.org/10.1038/s41598-022-20703-9 |
Ejemplares similares
-
A densely interconnected network for deep learning accelerated MRI
por: Ottesen, Jon André, et al.
Publicado: (2022) -
MRI-based radiomics in breast cancer: feature robustness with respect to inter-observer segmentation variability
por: Granzier, R. W. Y., et al.
Publicado: (2020) -
Stability of Multi-Parametric Prostate MRI Radiomic Features to Variations in Segmentation
por: Thulasi Seetha, Sithin, et al.
Publicado: (2023) -
MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice
por: Holbrook, M. D., et al.
Publicado: (2020) -
Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation
por: Parmar, Chintan, et al.
Publicado: (2014)