Cargando…
METTL3/LINC00662/miR-186-5p feedback loop regulates docetaxel resistance in triple negative breast cancer
Insight into the mechanism of docetaxel resistance in breast cancer may help to improve prognosis. We aimed to investigate the role of N6-methyladenosine (m6A) and the METTL3/LINC00662/miR-186-5p pathway in regulating docetaxel resistance in triple negative breast cancer (TNBC). We have recruited 19...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537189/ https://www.ncbi.nlm.nih.gov/pubmed/36202872 http://dx.doi.org/10.1038/s41598-022-20477-0 |
Sumario: | Insight into the mechanism of docetaxel resistance in breast cancer may help to improve prognosis. We aimed to investigate the role of N6-methyladenosine (m6A) and the METTL3/LINC00662/miR-186-5p pathway in regulating docetaxel resistance in triple negative breast cancer (TNBC). We have recruited 193 pathologically diagnosed TNBC patients from 2016 to 2017 in our hospital. Quantitative real-time PCR was used to evaluate the expression of LINC00662 and miR-186-5p both in vivo and in vitro. CCK8 tests were used to assess cell viability. ELISA was used for protein expression evaluation. Dual luciferase reporter gene assay and RNA pull-down were used to evaluate the interaction between LINC00662 and miR-186-5p. m6A levels were enhanced in breast cancer tissues and cells. LINC00662, miR-186-5p and METTL3 were differentially expressed in vivo, and METTL3 expression was associated with LINC00662 and miR-186-5p expression. LINC00662 and miR-186-5p were differentially expressed in vitro; LINC00662 promoted cell viability and decreased the apoptosis rate, whereas miR-186-5p inhibited cell viability and increased the apoptosis rate. Furthermore, we found that METTL3 regulated m6A levels in docetaxel-resistant breast cancer cells by regulating the expression of LINC00662. Moreover, LINC00662 and miR-186-5p regulated the cell viability rate of docetaxel-resistant breast cancer cells. Further experiments showed that LINC00662 directly interacted with miR-186-5p to exert biological functions; besides miR-186-5p could regulate the expression of METTL3. METTL3 promotes m6A levels and docetaxel resistance in breast cancer by regulating the expression of LINC00662 and miR-186-5p; more experiments are needed to clarify the role of m6A regulation in drug resistance. |
---|