Cargando…

Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC

Patients with locally advanced head and neck squamous cell carcinoma (HNSCC) may benefit from personalised treatment, requiring biomarkers that characterize the tumour and predict treatment response. We integrate pre-treatment CT radiomics and whole-transcriptome data from a multicentre retrospectiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Rabasco Meneghetti, Asier, Zwanenburg, Alex, Linge, Annett, Lohaus, Fabian, Grosser, Marianne, Baretton, Gustavo B., Kalinauskaite, Goda, Tinhofer, Ingeborg, Guberina, Maja, Stuschke, Martin, Balermpas, Panagiotis, von der Grün, Jens, Ganswindt, Ute, Belka, Claus, Peeken, Jan C., Combs, Stephanie E., Böke, Simon, Zips, Daniel, Troost, Esther G. C., Krause, Mechthild, Baumann, Michael, Löck, Steffen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537286/
https://www.ncbi.nlm.nih.gov/pubmed/36202941
http://dx.doi.org/10.1038/s41598-022-21159-7
_version_ 1784803166610522112
author Rabasco Meneghetti, Asier
Zwanenburg, Alex
Linge, Annett
Lohaus, Fabian
Grosser, Marianne
Baretton, Gustavo B.
Kalinauskaite, Goda
Tinhofer, Ingeborg
Guberina, Maja
Stuschke, Martin
Balermpas, Panagiotis
von der Grün, Jens
Ganswindt, Ute
Belka, Claus
Peeken, Jan C.
Combs, Stephanie E.
Böke, Simon
Zips, Daniel
Troost, Esther G. C.
Krause, Mechthild
Baumann, Michael
Löck, Steffen
author_facet Rabasco Meneghetti, Asier
Zwanenburg, Alex
Linge, Annett
Lohaus, Fabian
Grosser, Marianne
Baretton, Gustavo B.
Kalinauskaite, Goda
Tinhofer, Ingeborg
Guberina, Maja
Stuschke, Martin
Balermpas, Panagiotis
von der Grün, Jens
Ganswindt, Ute
Belka, Claus
Peeken, Jan C.
Combs, Stephanie E.
Böke, Simon
Zips, Daniel
Troost, Esther G. C.
Krause, Mechthild
Baumann, Michael
Löck, Steffen
author_sort Rabasco Meneghetti, Asier
collection PubMed
description Patients with locally advanced head and neck squamous cell carcinoma (HNSCC) may benefit from personalised treatment, requiring biomarkers that characterize the tumour and predict treatment response. We integrate pre-treatment CT radiomics and whole-transcriptome data from a multicentre retrospective cohort of 206 patients with locally advanced HNSCC treated with primary radiochemotherapy to classify tumour molecular subtypes based on radiomics, develop surrogate radiomics signatures for gene-based signatures related to different biological tumour characteristics and evaluate the potential of combining radiomics features with full-transcriptome data for the prediction of loco-regional control (LRC). Using end-to-end machine-learning, we developed and validated a model to classify tumours of the atypical subtype (AUC [95% confidence interval] 0.69 [0.53–0.83]) based on CT imaging, observed that CT-based radiomics models have limited value as surrogates for six selected gene signatures (AUC < 0.60), and showed that combining a radiomics signature with a transcriptomics signature consisting of two metagenes representing the hedgehog pathway and E2F transcriptional targets improves the prognostic value for LRC compared to both individual sources (validation C-index [95% confidence interval], combined: 0.63 [0.55–0.73] vs radiomics: 0.60 [0.50–0.71] and transcriptomics: 0.59 [0.49–0.69]). These results underline the potential of multi-omics analyses to generate reliable biomarkers for future application in personalized oncology.
format Online
Article
Text
id pubmed-9537286
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-95372862022-10-08 Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC Rabasco Meneghetti, Asier Zwanenburg, Alex Linge, Annett Lohaus, Fabian Grosser, Marianne Baretton, Gustavo B. Kalinauskaite, Goda Tinhofer, Ingeborg Guberina, Maja Stuschke, Martin Balermpas, Panagiotis von der Grün, Jens Ganswindt, Ute Belka, Claus Peeken, Jan C. Combs, Stephanie E. Böke, Simon Zips, Daniel Troost, Esther G. C. Krause, Mechthild Baumann, Michael Löck, Steffen Sci Rep Article Patients with locally advanced head and neck squamous cell carcinoma (HNSCC) may benefit from personalised treatment, requiring biomarkers that characterize the tumour and predict treatment response. We integrate pre-treatment CT radiomics and whole-transcriptome data from a multicentre retrospective cohort of 206 patients with locally advanced HNSCC treated with primary radiochemotherapy to classify tumour molecular subtypes based on radiomics, develop surrogate radiomics signatures for gene-based signatures related to different biological tumour characteristics and evaluate the potential of combining radiomics features with full-transcriptome data for the prediction of loco-regional control (LRC). Using end-to-end machine-learning, we developed and validated a model to classify tumours of the atypical subtype (AUC [95% confidence interval] 0.69 [0.53–0.83]) based on CT imaging, observed that CT-based radiomics models have limited value as surrogates for six selected gene signatures (AUC < 0.60), and showed that combining a radiomics signature with a transcriptomics signature consisting of two metagenes representing the hedgehog pathway and E2F transcriptional targets improves the prognostic value for LRC compared to both individual sources (validation C-index [95% confidence interval], combined: 0.63 [0.55–0.73] vs radiomics: 0.60 [0.50–0.71] and transcriptomics: 0.59 [0.49–0.69]). These results underline the potential of multi-omics analyses to generate reliable biomarkers for future application in personalized oncology. Nature Publishing Group UK 2022-10-06 /pmc/articles/PMC9537286/ /pubmed/36202941 http://dx.doi.org/10.1038/s41598-022-21159-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Rabasco Meneghetti, Asier
Zwanenburg, Alex
Linge, Annett
Lohaus, Fabian
Grosser, Marianne
Baretton, Gustavo B.
Kalinauskaite, Goda
Tinhofer, Ingeborg
Guberina, Maja
Stuschke, Martin
Balermpas, Panagiotis
von der Grün, Jens
Ganswindt, Ute
Belka, Claus
Peeken, Jan C.
Combs, Stephanie E.
Böke, Simon
Zips, Daniel
Troost, Esther G. C.
Krause, Mechthild
Baumann, Michael
Löck, Steffen
Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC
title Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC
title_full Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC
title_fullStr Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC
title_full_unstemmed Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC
title_short Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC
title_sort integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced hnscc
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537286/
https://www.ncbi.nlm.nih.gov/pubmed/36202941
http://dx.doi.org/10.1038/s41598-022-21159-7
work_keys_str_mv AT rabascomeneghettiasier integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT zwanenburgalex integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT lingeannett integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT lohausfabian integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT grossermarianne integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT barettongustavob integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT kalinauskaitegoda integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT tinhoferingeborg integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT guberinamaja integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT stuschkemartin integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT balermpaspanagiotis integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT vondergrunjens integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT ganswindtute integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT belkaclaus integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT peekenjanc integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT combsstephaniee integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT bokesimon integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT zipsdaniel integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT troostesthergc integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT krausemechthild integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT baumannmichael integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc
AT locksteffen integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc