Cargando…
Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC
Patients with locally advanced head and neck squamous cell carcinoma (HNSCC) may benefit from personalised treatment, requiring biomarkers that characterize the tumour and predict treatment response. We integrate pre-treatment CT radiomics and whole-transcriptome data from a multicentre retrospectiv...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537286/ https://www.ncbi.nlm.nih.gov/pubmed/36202941 http://dx.doi.org/10.1038/s41598-022-21159-7 |
_version_ | 1784803166610522112 |
---|---|
author | Rabasco Meneghetti, Asier Zwanenburg, Alex Linge, Annett Lohaus, Fabian Grosser, Marianne Baretton, Gustavo B. Kalinauskaite, Goda Tinhofer, Ingeborg Guberina, Maja Stuschke, Martin Balermpas, Panagiotis von der Grün, Jens Ganswindt, Ute Belka, Claus Peeken, Jan C. Combs, Stephanie E. Böke, Simon Zips, Daniel Troost, Esther G. C. Krause, Mechthild Baumann, Michael Löck, Steffen |
author_facet | Rabasco Meneghetti, Asier Zwanenburg, Alex Linge, Annett Lohaus, Fabian Grosser, Marianne Baretton, Gustavo B. Kalinauskaite, Goda Tinhofer, Ingeborg Guberina, Maja Stuschke, Martin Balermpas, Panagiotis von der Grün, Jens Ganswindt, Ute Belka, Claus Peeken, Jan C. Combs, Stephanie E. Böke, Simon Zips, Daniel Troost, Esther G. C. Krause, Mechthild Baumann, Michael Löck, Steffen |
author_sort | Rabasco Meneghetti, Asier |
collection | PubMed |
description | Patients with locally advanced head and neck squamous cell carcinoma (HNSCC) may benefit from personalised treatment, requiring biomarkers that characterize the tumour and predict treatment response. We integrate pre-treatment CT radiomics and whole-transcriptome data from a multicentre retrospective cohort of 206 patients with locally advanced HNSCC treated with primary radiochemotherapy to classify tumour molecular subtypes based on radiomics, develop surrogate radiomics signatures for gene-based signatures related to different biological tumour characteristics and evaluate the potential of combining radiomics features with full-transcriptome data for the prediction of loco-regional control (LRC). Using end-to-end machine-learning, we developed and validated a model to classify tumours of the atypical subtype (AUC [95% confidence interval] 0.69 [0.53–0.83]) based on CT imaging, observed that CT-based radiomics models have limited value as surrogates for six selected gene signatures (AUC < 0.60), and showed that combining a radiomics signature with a transcriptomics signature consisting of two metagenes representing the hedgehog pathway and E2F transcriptional targets improves the prognostic value for LRC compared to both individual sources (validation C-index [95% confidence interval], combined: 0.63 [0.55–0.73] vs radiomics: 0.60 [0.50–0.71] and transcriptomics: 0.59 [0.49–0.69]). These results underline the potential of multi-omics analyses to generate reliable biomarkers for future application in personalized oncology. |
format | Online Article Text |
id | pubmed-9537286 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-95372862022-10-08 Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC Rabasco Meneghetti, Asier Zwanenburg, Alex Linge, Annett Lohaus, Fabian Grosser, Marianne Baretton, Gustavo B. Kalinauskaite, Goda Tinhofer, Ingeborg Guberina, Maja Stuschke, Martin Balermpas, Panagiotis von der Grün, Jens Ganswindt, Ute Belka, Claus Peeken, Jan C. Combs, Stephanie E. Böke, Simon Zips, Daniel Troost, Esther G. C. Krause, Mechthild Baumann, Michael Löck, Steffen Sci Rep Article Patients with locally advanced head and neck squamous cell carcinoma (HNSCC) may benefit from personalised treatment, requiring biomarkers that characterize the tumour and predict treatment response. We integrate pre-treatment CT radiomics and whole-transcriptome data from a multicentre retrospective cohort of 206 patients with locally advanced HNSCC treated with primary radiochemotherapy to classify tumour molecular subtypes based on radiomics, develop surrogate radiomics signatures for gene-based signatures related to different biological tumour characteristics and evaluate the potential of combining radiomics features with full-transcriptome data for the prediction of loco-regional control (LRC). Using end-to-end machine-learning, we developed and validated a model to classify tumours of the atypical subtype (AUC [95% confidence interval] 0.69 [0.53–0.83]) based on CT imaging, observed that CT-based radiomics models have limited value as surrogates for six selected gene signatures (AUC < 0.60), and showed that combining a radiomics signature with a transcriptomics signature consisting of two metagenes representing the hedgehog pathway and E2F transcriptional targets improves the prognostic value for LRC compared to both individual sources (validation C-index [95% confidence interval], combined: 0.63 [0.55–0.73] vs radiomics: 0.60 [0.50–0.71] and transcriptomics: 0.59 [0.49–0.69]). These results underline the potential of multi-omics analyses to generate reliable biomarkers for future application in personalized oncology. Nature Publishing Group UK 2022-10-06 /pmc/articles/PMC9537286/ /pubmed/36202941 http://dx.doi.org/10.1038/s41598-022-21159-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Rabasco Meneghetti, Asier Zwanenburg, Alex Linge, Annett Lohaus, Fabian Grosser, Marianne Baretton, Gustavo B. Kalinauskaite, Goda Tinhofer, Ingeborg Guberina, Maja Stuschke, Martin Balermpas, Panagiotis von der Grün, Jens Ganswindt, Ute Belka, Claus Peeken, Jan C. Combs, Stephanie E. Böke, Simon Zips, Daniel Troost, Esther G. C. Krause, Mechthild Baumann, Michael Löck, Steffen Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC |
title | Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC |
title_full | Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC |
title_fullStr | Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC |
title_full_unstemmed | Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC |
title_short | Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC |
title_sort | integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced hnscc |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537286/ https://www.ncbi.nlm.nih.gov/pubmed/36202941 http://dx.doi.org/10.1038/s41598-022-21159-7 |
work_keys_str_mv | AT rabascomeneghettiasier integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT zwanenburgalex integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT lingeannett integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT lohausfabian integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT grossermarianne integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT barettongustavob integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT kalinauskaitegoda integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT tinhoferingeborg integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT guberinamaja integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT stuschkemartin integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT balermpaspanagiotis integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT vondergrunjens integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT ganswindtute integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT belkaclaus integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT peekenjanc integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT combsstephaniee integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT bokesimon integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT zipsdaniel integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT troostesthergc integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT krausemechthild integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT baumannmichael integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc AT locksteffen integratedradiogenomicsanalysesallowforsubtypeclassificationandimprovedoutcomeprognosisofpatientswithlocallyadvancedhnscc |