Cargando…
Post-stroke respiratory complications using machine learning with voice features from mobile devices
Abnormal voice may identify those at risk of post-stroke aspiration. This study was aimed to determine whether machine learning algorithms with voice recorded via a mobile device can accurately classify those with dysphagia at risk of tube feeding and post-stroke aspiration pneumonia and be used as...
Autores principales: | Park, Hae-Yeon, Park, DoGyeom, Kang, Hye Seon, Kim, HyunBum, Lee, Seungchul, Im, Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537337/ https://www.ncbi.nlm.nih.gov/pubmed/36202829 http://dx.doi.org/10.1038/s41598-022-20348-8 |
Ejemplares similares
-
Author Correction: Post-stroke respiratory complications using machine learning with voice features from mobile devices
por: Park, Hae-Yeon, et al.
Publicado: (2022) -
Convolutional Neural Network Classifies Pathological Voice Change in Laryngeal Cancer with High Accuracy
por: Kim, HyunBum, et al.
Publicado: (2020) -
Investigating the Impact of Voice Impairment on Quality of Life in Stroke Patients: The Voice Handicap Index (VHI) Questionnaire Study
por: Hwang, Hyemi, et al.
Publicado: (2023) -
Programming voice interfaces: giving connected devices a voice
por: Quesada, Walter, et al.
Publicado: (2018) -
Cut-off Values of the Respiratory Muscle Power and Peak Cough Flow in Post-Stroke Dysphagia
por: Han, Yeon Jae, et al.
Publicado: (2020)