Cargando…
A Study on the Optimal Artificial Intelligence Model for Determination of Urolithiasis
PURPOSE: This paper aims to develop a clinical decision support system (CDSS) that can help detect the stone that is most important to the diagnosis of urolithiasis. Among them, especially for the development of artificial intelligence (AI) models that support a final judgment in CDSS, we would like...
Autores principales: | Eun, Sung-Jong, Yun, Myoung Suk, Whangbo, Taeg-Keun, Kim, Khae-Hawn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Continence Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537435/ https://www.ncbi.nlm.nih.gov/pubmed/36203253 http://dx.doi.org/10.5213/inj.2244202.101 |
Ejemplares similares
-
Transfer Learning for Effective Urolithiasis Detection
por: Choi, Hyoung-Sun, et al.
Publicado: (2023) -
Development of Personalized Urination Recognition Technology Using Smart Bands
por: Eun, Sung-Jong, et al.
Publicado: (2017) -
The Prospect of a New Smart Healthcare System: A Wearable Device-Based Complex Structure of Position Detecting and Location Recognition System
por: Chung, Kyung Jin, et al.
Publicado: (2019) -
Applications of artificial intelligence in urological setting: a hopeful path to improved care
por: Eun, Sung-Jong, et al.
Publicado: (2021) -
Development of an Artificial Intelligence-Based Support Technology for Urethral and Ureteral Stricture Surgery
por: Eun, Sung-Jong, et al.
Publicado: (2022)