Cargando…

Lineage-coupled clonal capture identifies clonal evolution mechanisms and vulnerabilities of BRAF(V600E) inhibition resistance in melanoma

Targeted cancer therapies have revolutionized treatment but their efficacies are limited by the development of resistance driven by clonal evolution within tumors. We developed “CAPTURE”, a single-cell barcoding approach to comprehensively trace clonal dynamics and capture live lineage-coupled resis...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ze-Yan, Ding, Yingwen, Ezhilarasan, Ravesanker, Lhakhang, Tenzin, Wang, Qianghu, Yang, Jie, Modrek, Aram S., Zhang, Hua, Tsirigos, Aristotelis, Futreal, Andrew, Draetta, Giulio F., Verhaak, Roel G. W., Sulman, Erik P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537441/
https://www.ncbi.nlm.nih.gov/pubmed/36202798
http://dx.doi.org/10.1038/s41421-022-00462-7
Descripción
Sumario:Targeted cancer therapies have revolutionized treatment but their efficacies are limited by the development of resistance driven by clonal evolution within tumors. We developed “CAPTURE”, a single-cell barcoding approach to comprehensively trace clonal dynamics and capture live lineage-coupled resistant cells for in-depth multi-omics analysis and functional exploration. We demonstrate that heterogeneous clones, either preexisting or emerging from drug-tolerant persister cells, dominated resistance to vemurafenib in BRAF(V600E) melanoma. Further integrative studies uncovered diverse resistance mechanisms. This includes a previously unrecognized and clinically relevant mechanism, chromosome 18q21 gain, which leads to vulnerability of the cells to BCL2 inhibitor. We also identified targetable common dependencies of captured resistant clones, such as oxidative phosphorylation and E2F pathways. Our study provides new therapeutic insights into overcoming therapy resistance in BRAF(V600E) melanoma and presents a platform for exploring clonal evolution dynamics and vulnerabilities that can be applied to study treatment resistance in other cancers.