Cargando…
An interpretable semi-supervised framework for patch-based classification of breast cancer
Developing effective invasive Ductal Carcinoma (IDC) detection methods remains a challenging problem for breast cancer diagnosis. Recently, there has been notable success in utilizing deep neural networks in various application domains; however, it is well-known that deep neural networks require a l...
Autores principales: | Shawi, Radwa El, Kilanava, Khatia, Sakr, Sherif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537500/ https://www.ncbi.nlm.nih.gov/pubmed/36202832 http://dx.doi.org/10.1038/s41598-022-20268-7 |
Ejemplares similares
-
On the interpretability of machine learning-based model for predicting hypertension
por: Elshawi, Radwa, et al.
Publicado: (2019) -
A novel semi-supervised framework for UAV based crop/weed classification
por: Khan, Shahbaz, et al.
Publicado: (2021) -
A semi-supervised machine learning framework for microRNA classification
por: Sheikh Hassani, Mohsen, et al.
Publicado: (2019) -
meth-SemiCancer: a cancer subtype classification framework via semi-supervised learning utilizing DNA methylation profiles
por: Choi, Joung Min, et al.
Publicado: (2023) -
Semi-supervised vision transformer with adaptive token sampling for breast cancer classification
por: Wang, Wei, et al.
Publicado: (2022)