Cargando…
A Deep Learning Architecture for Meningioma Brain Tumor Detection and Segmentation
The meningioma brain tumor detection and segmentation method is a complex process due to its low intensity pixel profile. In this article, the meningioma brain tumor images were detected and tumor regions were segmented using a convolutional neural network (CNN) classification approach. The source b...
Autores principales: | Anita, John Nisha, Kumaran, Sujatha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Cancer Prevention
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537580/ https://www.ncbi.nlm.nih.gov/pubmed/36258715 http://dx.doi.org/10.15430/JCP.2022.27.3.192 |
Ejemplares similares
-
Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI
por: Laukamp, Kai Roman, et al.
Publicado: (2018) -
Automatic Meningioma Segmentation and Grading Prediction: A Hybrid Deep-Learning Method
por: Chen, Chaoyue, et al.
Publicado: (2021) -
Deep Learning Hybrid Techniques for Brain Tumor Segmentation
por: Munir, Khushboo, et al.
Publicado: (2022) -
A bi-directional deep learning architecture for lung nodule semantic segmentation
por: Bhattacharyya, Debnath, et al.
Publicado: (2022) -
Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation
por: Estienne, Théo, et al.
Publicado: (2020)