Cargando…
MO-MEMES: A method for accelerating virtual screening using multi-objective Bayesian optimization
The pursuit of potential inhibitors for novel targets has become a very important problem especially over the last 2 years with the world in the midst of the COVID-19 pandemic. This entails performing high throughput screening exercises on drug libraries to identify potential “hits”. These hits are...
Autores principales: | Mehta, Sarvesh, Goel, Manan, Priyakumar, U. Deva |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537730/ https://www.ncbi.nlm.nih.gov/pubmed/36213671 http://dx.doi.org/10.3389/fmed.2022.916481 |
Ejemplares similares
-
MEMES: Machine learning framework for Enhanced MolEcular Screening
por: Mehta, Sarvesh, et al.
Publicado: (2021) -
Streamlining pipeline efficiency: a novel model-agnostic technique for accelerating conditional generative and virtual screening pipelines
por: Viswanathan, Karthik, et al.
Publicado: (2023) -
Bayesian Multi-objective Hyperparameter Optimization for Accurate, Fast, and Efficient Neural Network Accelerator Design
por: Parsa, Maryam, et al.
Publicado: (2020) -
Continuous flow synthesis of pyridinium salts accelerated by multi-objective Bayesian optimization with active learning
por: Dunlap, John H., et al.
Publicado: (2023) -
The MEME Suite
por: Bailey, Timothy L., et al.
Publicado: (2015)