Cargando…
Construction of talent training mechanism for innovation and entrepreneurship education in colleges and universities based on data fusion algorithm
Nowadays, innovation and entrepreneurship courses occupy a very important place in universities and colleges and have also become an important teaching position in the process of building a new science. Colleges and universities actively respond to the challenge of “mass entrepreneurship and innovat...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537772/ https://www.ncbi.nlm.nih.gov/pubmed/36211907 http://dx.doi.org/10.3389/fpsyg.2022.968023 |
_version_ | 1784803276826345472 |
---|---|
author | Liu, Yuanbing |
author_facet | Liu, Yuanbing |
author_sort | Liu, Yuanbing |
collection | PubMed |
description | Nowadays, innovation and entrepreneurship courses occupy a very important place in universities and colleges and have also become an important teaching position in the process of building a new science. Colleges and universities actively respond to the challenge of “mass entrepreneurship and innovation” and define the goals and specifications of the talent training mechanism based on data fusion algorithms to cultivate as much high-quality applied talent as possible. In view of some shortcomings and problems in the current talent training mechanism in universities and colleges, this paper proposes a data fusion algorithm based on information fusion theory and proof theory. The aim is to verify the feasibility of establishing a talent training mechanism for innovation and entrepreneurship education in universities and colleges. And this paper analyzes and explores the data fusion algorithm and the elements of innovation and entrepreneurial talent training, and forms an operating mechanism for entrepreneurial talent training according to social needs. Among them, the efficiency of the data fusion algorithm used by the GM(1,1) model plays a significant role in the final result, and the minimum relative error value is 3.2%. Finally, it is concluded that we should focus on establishing a perfect talent training system for college students’ innovation and entrepreneurship education to improve students’ own comprehensive quality and various abilities, and to solve some social problems that are difficult to find employment in essence. |
format | Online Article Text |
id | pubmed-9537772 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95377722022-10-08 Construction of talent training mechanism for innovation and entrepreneurship education in colleges and universities based on data fusion algorithm Liu, Yuanbing Front Psychol Psychology Nowadays, innovation and entrepreneurship courses occupy a very important place in universities and colleges and have also become an important teaching position in the process of building a new science. Colleges and universities actively respond to the challenge of “mass entrepreneurship and innovation” and define the goals and specifications of the talent training mechanism based on data fusion algorithms to cultivate as much high-quality applied talent as possible. In view of some shortcomings and problems in the current talent training mechanism in universities and colleges, this paper proposes a data fusion algorithm based on information fusion theory and proof theory. The aim is to verify the feasibility of establishing a talent training mechanism for innovation and entrepreneurship education in universities and colleges. And this paper analyzes and explores the data fusion algorithm and the elements of innovation and entrepreneurial talent training, and forms an operating mechanism for entrepreneurial talent training according to social needs. Among them, the efficiency of the data fusion algorithm used by the GM(1,1) model plays a significant role in the final result, and the minimum relative error value is 3.2%. Finally, it is concluded that we should focus on establishing a perfect talent training system for college students’ innovation and entrepreneurship education to improve students’ own comprehensive quality and various abilities, and to solve some social problems that are difficult to find employment in essence. Frontiers Media S.A. 2022-09-23 /pmc/articles/PMC9537772/ /pubmed/36211907 http://dx.doi.org/10.3389/fpsyg.2022.968023 Text en Copyright © 2022 Liu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Psychology Liu, Yuanbing Construction of talent training mechanism for innovation and entrepreneurship education in colleges and universities based on data fusion algorithm |
title | Construction of talent training mechanism for innovation and entrepreneurship education in colleges and universities based on data fusion algorithm |
title_full | Construction of talent training mechanism for innovation and entrepreneurship education in colleges and universities based on data fusion algorithm |
title_fullStr | Construction of talent training mechanism for innovation and entrepreneurship education in colleges and universities based on data fusion algorithm |
title_full_unstemmed | Construction of talent training mechanism for innovation and entrepreneurship education in colleges and universities based on data fusion algorithm |
title_short | Construction of talent training mechanism for innovation and entrepreneurship education in colleges and universities based on data fusion algorithm |
title_sort | construction of talent training mechanism for innovation and entrepreneurship education in colleges and universities based on data fusion algorithm |
topic | Psychology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537772/ https://www.ncbi.nlm.nih.gov/pubmed/36211907 http://dx.doi.org/10.3389/fpsyg.2022.968023 |
work_keys_str_mv | AT liuyuanbing constructionoftalenttrainingmechanismforinnovationandentrepreneurshipeducationincollegesanduniversitiesbasedondatafusionalgorithm |