Cargando…
Nomograms for prediction of breast cancer in breast imaging reporting and data system (BI-RADS) ultrasound category 4 or 5 lesions: A single-center retrospective study based on radiomics features
PURPOSE: To develop nomograms for predicting breast malignancy in BI-RADS ultrasound (US) category 4 or 5 lesions based on radiomics features. METHODS: Between January 2020 and January 2022, we prospectively collected and retrospectively analyzed the medical records of 496 patients pathologically pr...
Autores principales: | Hong, Zhi-Liang, Chen, Sheng, Peng, Xiao-Rui, Li, Jian-Wei, Yang, Jian-Chuan, Wu, Song-Song |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9538156/ https://www.ncbi.nlm.nih.gov/pubmed/36212503 http://dx.doi.org/10.3389/fonc.2022.894476 |
Ejemplares similares
-
Predicting Breast Cancer in Breast Imaging Reporting and Data System (BI-RADS) Ultrasound Category 4 or 5 Lesions: A Nomogram Combining Radiomics and BI-RADS
por: Luo, Wei-quan, et al.
Publicado: (2019) -
An MRI-Based Radiomics Model for Predicting the Benignity and Malignancy of BI-RADS 4 Breast Lesions
por: Zhang, Renzhi, et al.
Publicado: (2022) -
Risk-predicted dual nomograms consisting of clinical and ultrasound factors for downgrading BI-RADS category 4a breast lesions - A multiple centre study
por: Niu, Zihan, et al.
Publicado: (2021) -
Performance of machine learning software to classify breast lesions using BI-RADS radiomic features on ultrasound images
por: Fleury, Eduardo, et al.
Publicado: (2019) -
CEUS Helps to Rerate Small Breast Tumors of BI-RADS Category 3 and Category 4
por: Zhang, Jian-xing, et al.
Publicado: (2014)