Cargando…
EFMSDTI: Drug-target interaction prediction based on an efficient fusion of multi-source data
Accurate identification of Drug Target Interactions (DTIs) is of great significance for understanding the mechanism of drug treatment and discovering new drugs for disease treatment. Currently, computational methods of DTIs prediction that combine drug and target multi-source data can effectively re...
Autores principales: | Zhang, Yuanyuan, Wu, Mengjie, Wang, Shudong, Chen, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9538487/ https://www.ncbi.nlm.nih.gov/pubmed/36210804 http://dx.doi.org/10.3389/fphar.2022.1009996 |
Ejemplares similares
-
VGAEDTI: drug-target interaction prediction based on variational inference and graph autoencoder
por: Zhang, Yuanyuan, et al.
Publicado: (2023) -
Drug–disease association prediction with literature based multi-feature fusion
por: Kang, Hongyu, et al.
Publicado: (2023) -
Combining non-negative matrix factorization with graph Laplacian regularization for predicting drug-miRNA associations based on multi-source information fusion
por: Wang, Mei-Neng, et al.
Publicado: (2023) -
MFDA: Multiview fusion based on dual-level attention for drug interaction prediction
por: Lin, Kaibiao, et al.
Publicado: (2022) -
Deep learning-based multi-drug synergy prediction model for individually tailored anti-cancer therapies
por: She, Shengnan, et al.
Publicado: (2022)