Cargando…
MRI radiomics-based machine learning model integrated with clinic-radiological features for preoperative differentiation of sinonasal inverted papilloma and malignant sinonasal tumors
OBJECTIVE: To explore the best MRI radiomics-based machine learning model for differentiation of sinonasal inverted papilloma (SNIP) and malignant sinonasal tumor (MST), and investigate whether the combination of radiomics features and clinic–radiological features can produce a superior diagnostic p...
Autores principales: | Gu, Jinming, Yu, Qiang, Li, Quanjiang, Peng, Juan, Lv, Fajin, Gong, Beibei, Zhang, Xiaodi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9538572/ https://www.ncbi.nlm.nih.gov/pubmed/36212455 http://dx.doi.org/10.3389/fonc.2022.1003639 |
Ejemplares similares
-
Preoperative Prediction of Malignant Transformation of Sinonasal Inverted Papilloma Using MR Radiomics
por: Yan, Yang, et al.
Publicado: (2022) -
Etiology of sinonasal inverted papilloma: An update
por: Sunkara, Pranit R., et al.
Publicado: (2022) -
Risk Factors of Recurrence and Malignant Transformation of Sinonasal Inverted Papilloma
por: Gamrot-Wrzoł, Marta, et al.
Publicado: (2017) -
Inverted Sinonasal Papilloma Masquerading as a Malignancy - Report of an Unusual Case
por: Prasad, Harikrishnan, et al.
Publicado: (2016) -
Sinonasal inverted papilloma associated with squamous cell carcinoma
por: But-Hadzic, Jasna, et al.
Publicado: (2011)