Cargando…
A domain adaptation benchmark for T1-weighted brain magnetic resonance image segmentation
Accurate brain segmentation is critical for magnetic resonance imaging (MRI) analysis pipelines. Machine-learning-based brain MR image segmentation methods are among the state-of-the-art techniques for this task. Nevertheless, the segmentations produced by machine learning models often degrade in th...
Autores principales: | Saat, Parisa, Nogovitsyn, Nikita, Hassan, Muhammad Yusuf, Ganaie, Muhammad Athar, Souza, Roberto, Hemmati, Hadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9538795/ https://www.ncbi.nlm.nih.gov/pubmed/36213544 http://dx.doi.org/10.3389/fninf.2022.919779 |
Ejemplares similares
-
Transductive Transfer Learning for Domain Adaptation in Brain Magnetic Resonance Image Segmentation
por: Kushibar, Kaisar, et al.
Publicado: (2021) -
Benchmarking Domain Adaptation Methods on Aerial Datasets
por: Nagananda, Navya, et al.
Publicado: (2021) -
CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation
por: Dorent, Reuben, et al.
Publicado: (2023) -
Automatic segmentation of myocardium at risk in T2-weighted cardiovascular magnetic resonance
por: Sjogren, Jane, et al.
Publicado: (2012) -
The Liver Tumor Segmentation Benchmark (LiTS)
por: Bilic, Patrick, et al.
Publicado: (2023)