Cargando…
A multi‐institutional prediction model to estimate the risk of recurrence and mortality after mastectomy for T1‐2N1 breast cancer
BACKGROUND: Post‐mastectomy radiation therapy (PMRT) in women with pathologic stage T1‐2N1M0 breast cancer is controversial. METHODS: Data from five North American institutions including women undergoing mastectomy without neoadjuvant therapy with pT1‐2N1M0 breast cancer treated from 2006 to 2015 we...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9539507/ https://www.ncbi.nlm.nih.gov/pubmed/35713598 http://dx.doi.org/10.1002/cncr.34352 |
_version_ | 1784803503362801664 |
---|---|
author | Sittenfeld, Sarah M. C. Zabor, Emily C. Hamilton, Sarah N. Kuerer, Henry M. El‐Tamer, Mahmoud Naoum, George E. Truong, Pauline T. Nichol, Alan Smith, Benjamin D. Woodward, Wendy A. Moo, Tracy‐Ann Powell, Simon N. Shah, Chirag S. Taghian, Alphonse G. Abu‐Gheida, Ibrahim Tendulkar, Rahul D. |
author_facet | Sittenfeld, Sarah M. C. Zabor, Emily C. Hamilton, Sarah N. Kuerer, Henry M. El‐Tamer, Mahmoud Naoum, George E. Truong, Pauline T. Nichol, Alan Smith, Benjamin D. Woodward, Wendy A. Moo, Tracy‐Ann Powell, Simon N. Shah, Chirag S. Taghian, Alphonse G. Abu‐Gheida, Ibrahim Tendulkar, Rahul D. |
author_sort | Sittenfeld, Sarah M. C. |
collection | PubMed |
description | BACKGROUND: Post‐mastectomy radiation therapy (PMRT) in women with pathologic stage T1‐2N1M0 breast cancer is controversial. METHODS: Data from five North American institutions including women undergoing mastectomy without neoadjuvant therapy with pT1‐2N1M0 breast cancer treated from 2006 to 2015 were pooled for analysis. Competing‐risks regression was performed to identify factors associated with locoregional recurrence (LRR), distant metastasis (DM), overall recurrence (OR), and breast cancer mortality (BCM). RESULTS: A total of 3532 patients were included for analysis with a median follow‐up time among survivors of 6.8 years (interquartile range [IQR], 4.5–9.5 years). The 2154 (61%) patients who received PMRT had significantly more adverse risk factors than those patients not receiving PMRT: younger age, larger tumors, more positive lymph nodes, lymphovascular invasion, extracapsular extension, and positive margins (p < .05 for all). On competing risk regression analysis, receipt of PMRT was significantly associated with a decreased risk of LRR (hazard ratio [HR], 0.21; 95% confidence interval [CI], 0.14–0.31; p < .001) and OR (HR, 0.76; 95% CI, 0.62–0.94; p = .011). Model performance metrics for each end point showed good discrimination and calibration. An online prediction model to estimate predicted risks for each outcome based on individual patient and tumor characteristics was created from the model. CONCLUSIONS: In a large multi‐institutional cohort of patients, PMRT for T1‐2N1 breast cancer was associated with a significant reduction in locoregional and overall recurrence after accounting for known prognostic factors. An online calculator was developed to aid in personalized decision‐making regarding PMRT in this population. |
format | Online Article Text |
id | pubmed-9539507 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95395072022-10-14 A multi‐institutional prediction model to estimate the risk of recurrence and mortality after mastectomy for T1‐2N1 breast cancer Sittenfeld, Sarah M. C. Zabor, Emily C. Hamilton, Sarah N. Kuerer, Henry M. El‐Tamer, Mahmoud Naoum, George E. Truong, Pauline T. Nichol, Alan Smith, Benjamin D. Woodward, Wendy A. Moo, Tracy‐Ann Powell, Simon N. Shah, Chirag S. Taghian, Alphonse G. Abu‐Gheida, Ibrahim Tendulkar, Rahul D. Cancer Original Articles BACKGROUND: Post‐mastectomy radiation therapy (PMRT) in women with pathologic stage T1‐2N1M0 breast cancer is controversial. METHODS: Data from five North American institutions including women undergoing mastectomy without neoadjuvant therapy with pT1‐2N1M0 breast cancer treated from 2006 to 2015 were pooled for analysis. Competing‐risks regression was performed to identify factors associated with locoregional recurrence (LRR), distant metastasis (DM), overall recurrence (OR), and breast cancer mortality (BCM). RESULTS: A total of 3532 patients were included for analysis with a median follow‐up time among survivors of 6.8 years (interquartile range [IQR], 4.5–9.5 years). The 2154 (61%) patients who received PMRT had significantly more adverse risk factors than those patients not receiving PMRT: younger age, larger tumors, more positive lymph nodes, lymphovascular invasion, extracapsular extension, and positive margins (p < .05 for all). On competing risk regression analysis, receipt of PMRT was significantly associated with a decreased risk of LRR (hazard ratio [HR], 0.21; 95% confidence interval [CI], 0.14–0.31; p < .001) and OR (HR, 0.76; 95% CI, 0.62–0.94; p = .011). Model performance metrics for each end point showed good discrimination and calibration. An online prediction model to estimate predicted risks for each outcome based on individual patient and tumor characteristics was created from the model. CONCLUSIONS: In a large multi‐institutional cohort of patients, PMRT for T1‐2N1 breast cancer was associated with a significant reduction in locoregional and overall recurrence after accounting for known prognostic factors. An online calculator was developed to aid in personalized decision‐making regarding PMRT in this population. John Wiley and Sons Inc. 2022-06-17 2022-08-15 /pmc/articles/PMC9539507/ /pubmed/35713598 http://dx.doi.org/10.1002/cncr.34352 Text en © 2022 The Authors. Cancer published by Wiley Periodicals LLC on behalf of American Cancer Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Sittenfeld, Sarah M. C. Zabor, Emily C. Hamilton, Sarah N. Kuerer, Henry M. El‐Tamer, Mahmoud Naoum, George E. Truong, Pauline T. Nichol, Alan Smith, Benjamin D. Woodward, Wendy A. Moo, Tracy‐Ann Powell, Simon N. Shah, Chirag S. Taghian, Alphonse G. Abu‐Gheida, Ibrahim Tendulkar, Rahul D. A multi‐institutional prediction model to estimate the risk of recurrence and mortality after mastectomy for T1‐2N1 breast cancer |
title | A multi‐institutional prediction model to estimate the risk of recurrence and mortality after mastectomy for T1‐2N1 breast cancer |
title_full | A multi‐institutional prediction model to estimate the risk of recurrence and mortality after mastectomy for T1‐2N1 breast cancer |
title_fullStr | A multi‐institutional prediction model to estimate the risk of recurrence and mortality after mastectomy for T1‐2N1 breast cancer |
title_full_unstemmed | A multi‐institutional prediction model to estimate the risk of recurrence and mortality after mastectomy for T1‐2N1 breast cancer |
title_short | A multi‐institutional prediction model to estimate the risk of recurrence and mortality after mastectomy for T1‐2N1 breast cancer |
title_sort | multi‐institutional prediction model to estimate the risk of recurrence and mortality after mastectomy for t1‐2n1 breast cancer |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9539507/ https://www.ncbi.nlm.nih.gov/pubmed/35713598 http://dx.doi.org/10.1002/cncr.34352 |
work_keys_str_mv | AT sittenfeldsarahmc amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT zaboremilyc amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT hamiltonsarahn amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT kuererhenrym amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT eltamermahmoud amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT naoumgeorgee amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT truongpaulinet amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT nicholalan amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT smithbenjamind amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT woodwardwendya amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT mootracyann amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT powellsimonn amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT shahchirags amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT taghianalphonseg amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT abugheidaibrahim amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT tendulkarrahuld amultiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT sittenfeldsarahmc multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT zaboremilyc multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT hamiltonsarahn multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT kuererhenrym multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT eltamermahmoud multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT naoumgeorgee multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT truongpaulinet multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT nicholalan multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT smithbenjamind multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT woodwardwendya multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT mootracyann multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT powellsimonn multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT shahchirags multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT taghianalphonseg multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT abugheidaibrahim multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer AT tendulkarrahuld multiinstitutionalpredictionmodeltoestimatetheriskofrecurrenceandmortalityaftermastectomyfort12n1breastcancer |