Cargando…
Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures
We provided a framework of a mathematical epidemic modeling and a countermeasure against the novel coronavirus disease (COVID-19) under no vaccines and specific medicines. The fact that even asymptomatic cases are infectious plays an important role for disease transmission and control. Some patients...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540046/ https://www.ncbi.nlm.nih.gov/pubmed/36203115 http://dx.doi.org/10.1007/s10729-022-09617-0 |
Sumario: | We provided a framework of a mathematical epidemic modeling and a countermeasure against the novel coronavirus disease (COVID-19) under no vaccines and specific medicines. The fact that even asymptomatic cases are infectious plays an important role for disease transmission and control. Some patients recover without developing the disease; therefore, the actual number of infected persons is expected to be greater than the number of confirmed cases of infection. Our study distinguished between cases of confirmed infection and infected persons in public places to investigate the effect of isolation. An epidemic model was established by utilizing a modified extended Susceptible-Exposed-Infectious-Recovered model incorporating three types of infectious and isolated compartments, abbreviated as SEIIIHHHR. Assuming that the intensity of behavioral restrictions can be controlled and be divided into multiple levels, we proposed the feedback controller approach to implement behavioral restrictions based on the active number of hospitalized persons. Numerical simulations were conducted using different detection rates and symptomatic ratios of infected persons. We investigated the appropriate timing for changing the degree of behavioral restrictions and confirmed that early initiating behavioral restrictions is a reasonable measure to reduce the burden on the health care system. We also examined the trade-off between reducing the cumulative number of deaths by the COVID-19 and saving the cost to prevent the spread of the virus. We concluded that a bang-bang control of the behavioral restriction can reduce the socio-economic cost, while a control of the restrictions with multiple levels can reduce the cumulative number of deaths by infection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10729-022-09617-0. |
---|