Cargando…
Integrated Bayesian and association-rules methods for autonomously orienting COVID-19 patients
The coronavirus infection continues to spread rapidly worldwide, having a devastating impact on the health of the global population. To fight against COVID-19, we propose a novel autonomous decision-making process which combines two modules in order to support the decision-maker: (1) Bayesian Networ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540074/ https://www.ncbi.nlm.nih.gov/pubmed/36205834 http://dx.doi.org/10.1007/s11517-022-02677-y |
Sumario: | The coronavirus infection continues to spread rapidly worldwide, having a devastating impact on the health of the global population. To fight against COVID-19, we propose a novel autonomous decision-making process which combines two modules in order to support the decision-maker: (1) Bayesian Networks method–based data-analysis module, which is used to specify the severity of coronavirus symptoms and classify cases as mild, moderate, and severe, and (2) autonomous decision-making module–based association rules mining method. This method allows the autonomous generation of the adequate decision based on the FP-growth algorithm and the distance between objects. To build the Bayesian Network model, we propose a novel data–based method that enables to effectively learn the network’s structure, namely, MIGT-SL algorithm. The experimentations are performed over pre-processed discrete dataset. The proposed algorithm allows to correctly generate 74%, 87.5%, and 100% of the original structure of ALARM, ASIA, and CANCER networks. The proposed Bayesian model performs well in terms of accuracy with 96.15% and 94.77%, respectively, for binary and multi-class classification. The developed decision-making model is evaluated according to its utility in solving the decisional problem, and its accuracy of proposing the adequate decision is about 97.80%. GRAPHICAL ABSTRACT: [Image: see text] |
---|