Cargando…

Opinion texts summarization based on texts concepts with multi-objective pruning approach

Considering the huge volume of opinion texts published on various social networks, it is extremely difficult to peruse and use these texts. The automatic creation of summaries can be a significant help for the users of such texts. The current paper employs manifold learning to mitigate the challenge...

Descripción completa

Detalles Bibliográficos
Autores principales: Gudakahriz, Sajjad Jahanbakhsh, Moghadam, Amir Masoud Eftekhari, Mahmoudi, Fariborz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540092/
https://www.ncbi.nlm.nih.gov/pubmed/36247797
http://dx.doi.org/10.1007/s11227-022-04842-4
Descripción
Sumario:Considering the huge volume of opinion texts published on various social networks, it is extremely difficult to peruse and use these texts. The automatic creation of summaries can be a significant help for the users of such texts. The current paper employs manifold learning to mitigate the challenges of the complexity and high dimensionality of opinion texts and the K-Means algorithm for clustering. Furthermore, summarization based on the concepts of the texts can improve the performance of the summarization system. The proposed method is unsupervised extractive, and summarization is performed based on the concepts of the texts using the multi-objective pruning approach. The main parameters utilized to perform multi-objective pruning include relevancy, redundancy, and coverage. The simulation results show that the proposed method outperformed the MOOTweetSumm method while providing an improvement of 11% in terms of the ROGUE-1 measure and an improvement of 9% in terms of the ROGUE-L measure.