Cargando…
Multiple imputation approaches for handling incomplete three‐level data with time‐varying cluster‐memberships
Three‐level data arising from repeated measures on individuals clustered within higher‐level units are common in medical research. A complexity arises when individuals change clusters over time, resulting in a cross‐classified data structure. Missing values in these studies are commonly handled via...
Autores principales: | Wijesuriya, Rushani, Moreno‐Betancur, Margarita, Carlin, John, De Silva, Anurika Priyanjali, Lee, Katherine Jane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540355/ https://www.ncbi.nlm.nih.gov/pubmed/35893317 http://dx.doi.org/10.1002/sim.9515 |
Ejemplares similares
-
Evaluation of approaches for accommodating interactions and non‐linear terms in multiple imputation of incomplete three‐level data
por: Wijesuriya, Rushani, et al.
Publicado: (2021) -
Evaluation of approaches for multiple imputation of three-level data
por: Wijesuriya, Rushani, et al.
Publicado: (2020) -
A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study
por: De Silva, Anurika Priyanjali, et al.
Publicado: (2017) -
Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study
por: De Silva, Anurika Priyanjali, et al.
Publicado: (2019) -
Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review
por: Mainzer, Rheanna, et al.
Publicado: (2023)