Cargando…

Plasma glycocholic acid and linoleic acid identified as potential mediators of mitochondrial bioenergetics in Alzheimer’s dementia

Mitochondrial bioenergetic alterations occur in the brain and peripheral cells of patients with Alzheimer’s disease (AD). This study focuses on plasma circulating factors, namely lipids, as mediators of systemic bioenergetic differences in participants with normal cognition (NC), mild cognitive impa...

Descripción completa

Detalles Bibliográficos
Autores principales: Amick, K. Allison, Mahapatra, Gargi, Gao, Zhengrong, Dewitt, Amber, Craft, Suzanne, Jain, Mohit, Molina, Anthony J. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540364/
https://www.ncbi.nlm.nih.gov/pubmed/36212044
http://dx.doi.org/10.3389/fnagi.2022.954090
_version_ 1784803690763255808
author Amick, K. Allison
Mahapatra, Gargi
Gao, Zhengrong
Dewitt, Amber
Craft, Suzanne
Jain, Mohit
Molina, Anthony J. A.
author_facet Amick, K. Allison
Mahapatra, Gargi
Gao, Zhengrong
Dewitt, Amber
Craft, Suzanne
Jain, Mohit
Molina, Anthony J. A.
author_sort Amick, K. Allison
collection PubMed
description Mitochondrial bioenergetic alterations occur in the brain and peripheral cells of patients with Alzheimer’s disease (AD). This study focuses on plasma circulating factors, namely lipids, as mediators of systemic bioenergetic differences in participants with normal cognition (NC), mild cognitive impairment (MCI), and dementia due to probable AD (DEM). We examined bioenergetic differences across cognitive groups by measuring the mitochondrial respiration of peripheral blood mononuclear cells (PBMCs) from 37 participants (12 NC, 12 MCI, 13 DEM). PBMC bioenergetics were lower in the DEM group compared to the NC group. To determine whether circulating factors can mediate bioenergetic differences according to cognitive status, we exposed naïve neuronal Neuro-2a (N2a) cells to plasma from each participant in vitro. N2a bioenergetics were lower following plasma exposure from DEM compared to NC group participants. Notably, PBMC Max and N2a Max positively correlated, suggesting that circulating factors modulate the bioenergetics of naïve N2a cells according to the bioenergetic capacity of donor primary PBMCs. To identify lipid metabolites that may contribute to bioenergetic differences between cognitive groups, we performed liquid chromatography-mass spectrometry to assess the abundance of individual lipid species and correlated PBMC and N2a bioenergetics. Glycocholic acid (GCA) positively correlated with PBMC and N2a bioenergetics, while linoleic acid (LA) was negatively correlated. These data suggest that GCA and LA may contribute to the stimulatory and inhibitory bioenergetics effects related to cognitive status. Post hoc analyses revealed that GCA abundance was lower by 52.9% in the DEM group compared to the NC group and that LA abundance was higher by 55.7% in the DEM group compared to the NC group. To validate these findings, we examined the abundance of GCA and LA in the larger, more diverse, parent cohort (n = 378) and found similar results; GCA abundance was lower by 29.7% in the DEM group compared to the NC group and LA abundance was higher by 17.8% in the DEM group compared to the NC group. These data demonstrate that circulating factors have a direct effect on mitochondrial bioenergetics and that individual circulating factors identified to be associated with mitochondrial function are differentially expressed in patients with dementia.
format Online
Article
Text
id pubmed-9540364
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-95403642022-10-08 Plasma glycocholic acid and linoleic acid identified as potential mediators of mitochondrial bioenergetics in Alzheimer’s dementia Amick, K. Allison Mahapatra, Gargi Gao, Zhengrong Dewitt, Amber Craft, Suzanne Jain, Mohit Molina, Anthony J. A. Front Aging Neurosci Neuroscience Mitochondrial bioenergetic alterations occur in the brain and peripheral cells of patients with Alzheimer’s disease (AD). This study focuses on plasma circulating factors, namely lipids, as mediators of systemic bioenergetic differences in participants with normal cognition (NC), mild cognitive impairment (MCI), and dementia due to probable AD (DEM). We examined bioenergetic differences across cognitive groups by measuring the mitochondrial respiration of peripheral blood mononuclear cells (PBMCs) from 37 participants (12 NC, 12 MCI, 13 DEM). PBMC bioenergetics were lower in the DEM group compared to the NC group. To determine whether circulating factors can mediate bioenergetic differences according to cognitive status, we exposed naïve neuronal Neuro-2a (N2a) cells to plasma from each participant in vitro. N2a bioenergetics were lower following plasma exposure from DEM compared to NC group participants. Notably, PBMC Max and N2a Max positively correlated, suggesting that circulating factors modulate the bioenergetics of naïve N2a cells according to the bioenergetic capacity of donor primary PBMCs. To identify lipid metabolites that may contribute to bioenergetic differences between cognitive groups, we performed liquid chromatography-mass spectrometry to assess the abundance of individual lipid species and correlated PBMC and N2a bioenergetics. Glycocholic acid (GCA) positively correlated with PBMC and N2a bioenergetics, while linoleic acid (LA) was negatively correlated. These data suggest that GCA and LA may contribute to the stimulatory and inhibitory bioenergetics effects related to cognitive status. Post hoc analyses revealed that GCA abundance was lower by 52.9% in the DEM group compared to the NC group and that LA abundance was higher by 55.7% in the DEM group compared to the NC group. To validate these findings, we examined the abundance of GCA and LA in the larger, more diverse, parent cohort (n = 378) and found similar results; GCA abundance was lower by 29.7% in the DEM group compared to the NC group and LA abundance was higher by 17.8% in the DEM group compared to the NC group. These data demonstrate that circulating factors have a direct effect on mitochondrial bioenergetics and that individual circulating factors identified to be associated with mitochondrial function are differentially expressed in patients with dementia. Frontiers Media S.A. 2022-09-23 /pmc/articles/PMC9540364/ /pubmed/36212044 http://dx.doi.org/10.3389/fnagi.2022.954090 Text en Copyright © 2022 Amick, Mahapatra, Gao, Dewitt, Craft, Jain and Molina. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Amick, K. Allison
Mahapatra, Gargi
Gao, Zhengrong
Dewitt, Amber
Craft, Suzanne
Jain, Mohit
Molina, Anthony J. A.
Plasma glycocholic acid and linoleic acid identified as potential mediators of mitochondrial bioenergetics in Alzheimer’s dementia
title Plasma glycocholic acid and linoleic acid identified as potential mediators of mitochondrial bioenergetics in Alzheimer’s dementia
title_full Plasma glycocholic acid and linoleic acid identified as potential mediators of mitochondrial bioenergetics in Alzheimer’s dementia
title_fullStr Plasma glycocholic acid and linoleic acid identified as potential mediators of mitochondrial bioenergetics in Alzheimer’s dementia
title_full_unstemmed Plasma glycocholic acid and linoleic acid identified as potential mediators of mitochondrial bioenergetics in Alzheimer’s dementia
title_short Plasma glycocholic acid and linoleic acid identified as potential mediators of mitochondrial bioenergetics in Alzheimer’s dementia
title_sort plasma glycocholic acid and linoleic acid identified as potential mediators of mitochondrial bioenergetics in alzheimer’s dementia
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540364/
https://www.ncbi.nlm.nih.gov/pubmed/36212044
http://dx.doi.org/10.3389/fnagi.2022.954090
work_keys_str_mv AT amickkallison plasmaglycocholicacidandlinoleicacididentifiedaspotentialmediatorsofmitochondrialbioenergeticsinalzheimersdementia
AT mahapatragargi plasmaglycocholicacidandlinoleicacididentifiedaspotentialmediatorsofmitochondrialbioenergeticsinalzheimersdementia
AT gaozhengrong plasmaglycocholicacidandlinoleicacididentifiedaspotentialmediatorsofmitochondrialbioenergeticsinalzheimersdementia
AT dewittamber plasmaglycocholicacidandlinoleicacididentifiedaspotentialmediatorsofmitochondrialbioenergeticsinalzheimersdementia
AT craftsuzanne plasmaglycocholicacidandlinoleicacididentifiedaspotentialmediatorsofmitochondrialbioenergeticsinalzheimersdementia
AT jainmohit plasmaglycocholicacidandlinoleicacididentifiedaspotentialmediatorsofmitochondrialbioenergeticsinalzheimersdementia
AT molinaanthonyja plasmaglycocholicacidandlinoleicacididentifiedaspotentialmediatorsofmitochondrialbioenergeticsinalzheimersdementia