Cargando…
Propensity score methods for observational studies with clustered data: A review
Propensity score methods are a popular approach to mitigating confounding bias when estimating causal effects in observational studies. When study units are clustered (eg, patients nested within health systems), additional challenges arise such as accounting for unmeasured confounding at multiple le...
Autores principales: | Chang, Ting‐Hsuan, Stuart, Elizabeth A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540428/ https://www.ncbi.nlm.nih.gov/pubmed/35603766 http://dx.doi.org/10.1002/sim.9437 |
Ejemplares similares
-
An overview of propensity score matching methods for clustered
data
por: Langworthy, Benjamin, et al.
Publicado: (2022) -
An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies
por: Austin, Peter C.
Publicado: (2011) -
Weight Trimming and Propensity Score Weighting
por: Lee, Brian K., et al.
Publicado: (2011) -
Propensity Score Matching with Retrospective and Observational Data in Palliative Care
por: Nair, Abhijit S, et al.
Publicado: (2020) -
Head to head comparison of the propensity score and the high-dimensional propensity score matching methods
por: Guertin, Jason R., et al.
Publicado: (2016)